Consequences and opportunities arising due to sparser single-cell RNA-seq datasets

被引:0
|
作者
Gerard A. Bouland
Ahmed Mahfouz
Marcel J. T. Reinders
机构
[1] Delft University of Technology,Delft Bioinformatics Lab
[2] Leiden University Medical Center,Department of Human Genetics
[3] Leiden University Medical Center,Leiden Computational Biology Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets increasing exponentially and concurrent increased sparsity due to more zero counts being measured for many genes, we demonstrate here that downstream analyses on binary-based gene expression give similar results as count-based analyses. Moreover, a binary representation scales up to ~ 50-fold more cells that can be analyzed using the same computational resources. We also highlight the possibilities provided by binarized scRNA-seq data. Development of specialized tools for bit-aware implementations of downstream analytical tasks will enable a more fine-grained resolution of biological heterogeneity.
引用
收藏
相关论文
共 50 条
  • [1] Consequences and opportunities arising due to sparser single-cell RNA-seq datasets
    Bouland, Gerard A.
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    GENOME BIOLOGY, 2023, 24 (01)
  • [2] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [3] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [4] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [5] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [6] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [7] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husic, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6375 - 6387
  • [8] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husić, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    Computational and Structural Biotechnology Journal, 2022, 20 : 6375 - 6387
  • [9] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [10] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029