Bose-Einstein transition in a dilute interacting gas

被引:0
|
作者
G. Baym
J.-P. Blaizot
M. Holzmann
F. Laloë
D. Vautherin
机构
[1] University of Illinois at Urbana-Champaign,
[2] 1110 W. Green St.,undefined
[3] Urbana,undefined
[4] IL 61801,undefined
[5] USA,undefined
[6] CEA-Saclay,undefined
[7] Service de Physique Théorique,undefined
[8] 91191 Gif-sur-Yvette,undefined
[9] Cedex,undefined
[10] France,undefined
[11] LKB and LPS,undefined
[12] École Normale Supérieure,undefined
[13] 24 rue Lhomond,undefined
[14] 75005 Paris,undefined
[15] France,undefined
[16] LPNHE,undefined
[17] Case 200,undefined
[18] Universités Paris 6/7,undefined
[19] 4 Place Jussieu,undefined
[20] 75005 Paris,undefined
[21] France,undefined
关键词
PACS. 05.30.Jp Boson systems – 05.30.-d Quantum statistical mechanics – 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena;
D O I
暂无
中图分类号
学科分类号
摘要
We study the effects of repulsive interactions on the critical density for the Bose-Einstein transition in a homogeneous dilute gas of bosons. First, we point out that the simple mean field approximation produces no change in the critical density, or critical temperature, and discuss the inadequacies of various contradictory results in the literature. Then, both within the frameworks of Ursell operators and of Green's functions, we derive self-consistent equations that include correlations in the system and predict the change of the critical density. We argue that the dominant contribution to this change can be obtained within classical field theory and show that the lowest order correction introduced by interactions is linear in the scattering length, a, with a positive coefficient. Finally, we calculate this coefficient within various approximations, and compare with various recent numerical estimates.
引用
收藏
页码:107 / 124
页数:17
相关论文
共 50 条
  • [21] Amplification of light in a dilute-gas Bose-Einstein condensate
    Trifonov, ED
    Shamrov, NI
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (01) : 43 - 50
  • [22] BOSE-EINSTEIN CONDENSATION IN THE LIQUID-PHASE OF AN INTERACTING GAS
    MACKOWIAK, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1989, 37 (1-2): : 101 - 115
  • [23] Gaussian domination and Bose-Einstein condensation in the interacting boson gas
    Corgini, M
    Sankovich, DP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (27): : 3235 - 3243
  • [24] Bose-Einstein condensation quantum kinetics for a gas of interacting excitons
    Schmitt, OM
    Thoai, DBT
    Gartner, LBP
    Haug, H
    PHYSICAL REVIEW LETTERS, 2001, 86 (17) : 3839 - 3842
  • [25] Bose-Einstein condensation in dilute gases
    Burnett, K
    NATURE, 2002, 417 (6891) : 793 - 794
  • [26] The viscosity of dilute Bose-Einstein condensates
    Gust, Erich D.
    Reichl, L. E.
    PHYSICA SCRIPTA, 2015, T165
  • [27] THEORY OF BOSE-EINSTEIN CONDENSATION OF AN IMPERFECT BOSE-EINSTEIN GAS
    MATSUBARA, T
    MORITA, A
    HONDA, N
    PROGRESS OF THEORETICAL PHYSICS, 1956, 16 (05): : 447 - 454
  • [28] Hydrodynamic modes in a trapped bose gas above the Bose-Einstein transition
    Griffin, A
    Wu, WC
    Stringari, S
    PHYSICAL REVIEW LETTERS, 1997, 78 (10) : 1838 - 1841
  • [29] Dilute, trapped bose gases and bose-einstein condensation
    Seiringer, R.
    LARGE COULOMB SYSTEMS, 2006, 695 : 249 - 274
  • [30] Bose-Einstein condensation in interacting gases
    M. Holzmann
    P. Grüter
    F. Laloë
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 10 : 739 - 760