Mod 3 cohomology algebras of finite H-spaces

被引:0
|
作者
James P. Lin
机构
[1] University of California,
[2] San Diego,undefined
[3] La Jolla,undefined
[4] CA 92093-0112,undefined
[5] USA (e-mail: jimlin@euclid.ucsd.edu) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 240卷
关键词
Mathematics Subject Classification (2000): 55S20, 55S45, 55R35, 55D45, 55G20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a 3 local, finite, simply connected H-space with associative homology ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H_* (X ; \mathbb F_3)$\end{document}. Some known examples are the Lie group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $E_8$\end{document}, Harper's H-space X(3) and any odd dimensional sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S^{2n+1}$\end{document}. We prove the cohomology algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $H^* (X; \mathbb F_3)$\end{document} is isomorphic to the cohomology algebra of a finite product of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $E_8 s, X(3) s$\end{document} and odd dimensional spheres.
引用
收藏
页码:389 / 403
页数:14
相关论文
共 50 条