Analysis of range search for random k-d trees

被引:3
|
作者
Philippe Chanzy
Luc Devroye
Carlos Zamora-Cura
机构
[1] School of Computer Science,
[2] McGill University,undefined
[3] Montreal,undefined
[4] Canada H3A 2K6 (e-mail: {luc,undefined
[5] czamora}@cs.mcgill.ca),undefined
来源
Acta Informatica | 2001年 / 37卷
关键词
Time Complexity; Time Analysis; Probabilistic Method; Random Point; Neighbor Search;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the expected time complexity of range searching with k-d trees in all dimensions when the data points are uniformly distributed in the unit hypercube. The partial match results of Flajolet and Puech are reproved using elementary probabilistic methods. In addition, we give asymptotic expected time analysis for orthogonal and convex range search, as well as nearest neighbor search. We disprove a conjecture by Bentley that nearest neighbor search for a given random point in the k-d tree can be done in O(1) expected time.
引用
收藏
页码:355 / 383
页数:28
相关论文
共 50 条
  • [31] OPTIMAL BUCKET SIZE FOR NEAREST NEIGHBOR SEARCHING IN K-D TREES
    EASTMAN, CM
    INFORMATION PROCESSING LETTERS, 1981, 12 (04) : 165 - 167
  • [32] Fast neighbor search by using revised k-d tree
    Chen, Yewang
    Zhou, Lida
    Tang, Yi
    Singh, Jai Puneet
    Bouguila, Nizar
    Wang, Cheng
    Wang, Huazhen
    Du, Jixiang
    INFORMATION SCIENCES, 2019, 472 : 145 - 162
  • [33] PARTIALLY SPECIFIED NEAREST NEIGHBOR SEARCHES USING K-D TREES
    EASTMAN, CM
    ZEMANKOVA, M
    INFORMATION PROCESSING LETTERS, 1982, 15 (02) : 53 - 56
  • [34] Using k-d trees for robust 3D point pattern matching
    Li, BH
    Holstein, H
    FOURTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2003, : 95 - 102
  • [35] Induction of linear decision trees with real-coded genetic algorithms and k-D trees
    Ng, SC
    Leung, KS
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 264 - 271
  • [36] DYNAMIC MULTIDIMENSIONAL DATA-STRUCTURES BASED ON QUAD-TREES AND K-D TREES
    OVERMARS, MH
    VANLEEUWEN, J
    ACTA INFORMATICA, 1982, 17 (03) : 267 - 285
  • [37] Collaborative Recommendations using Hierarchical Clustering based on K-d Trees and Quadtrees
    Das, Joydeep
    Majumder, Subhashis
    Gupta, Prosenjit
    Mali, Kalyani
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2019, 27 (04) : 637 - 668
  • [38] SEARCH FOR EXOTIC RESONANCES IN K-D INTERACTIONS AT 3 GEV/C
    GIACOMEL.G
    LUGARESI.P
    MINGUZZI.A
    ROSSI, AM
    BARLOUTA.R
    SCHEUER, JC
    BAKKER, AM
    HOOGLAND, W
    KLUYVER, JC
    ALEXANDE.G
    EISENBER.Y
    GOLDBERG, J
    ROUGE, A
    PHYSICS LETTERS B, 1970, B 33 (05) : 373 - &
  • [39] SEARCH FOR SIGMA(1616) IN K-D INTERACTIONS AT 3 GEV/C
    BARLOUTA.R
    MERRILL, DW
    SCHEUER, JC
    HOOGLAND, W
    KLUYVER, JC
    GIACOMEL.G
    MINGUZZI.A
    SERRA, P
    EISENBER.Y
    YEKUTIEL.G
    GOLDBERG, J
    ROUGE, A
    LAMIDEY, G
    NUCLEAR PHYSICS B, 1970, B 16 (01) : 201 - &
  • [40] KDT-MOEA: A multiobjective optimization framework based on K-D trees
    Lacerda, Allysson S. M.
    Batista, Lucas S.
    INFORMATION SCIENCES, 2019, 503 : 200 - 218