The remote set problem on lattices

被引:0
|
作者
Ishay Haviv
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
来源
computational complexity | 2015年 / 24卷
关键词
Lattices; covering radius; remote set problem; approximation algorithms; complexity classes; 68Q25; 11H06; 11H31;
D O I
暂无
中图分类号
学科分类号
摘要
We initiate studying the Remote Set Problem (RSP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{RSP}}$$\end{document}) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} outputs a set of points, at least one of which is logn/n·ρ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{\log n / n} \cdot \rho(\mathcal{L})}$$\end{document} -far from L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} , where ρ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho(\mathcal{L})}$$\end{document} stands for the covering radius of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} (i.e., the maximum possible distance of a point in space from L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}). As an application, we show that the covering radius problem with approximation factor n/logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{n / \log n}}$$\end{document} lies in the complexity class NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{NP}}$$\end{document} , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{\log n}}$$\end{document} .
引用
收藏
页码:103 / 131
页数:28
相关论文
共 50 条
  • [41] The problem of set
    Freeman, GL
    AMERICAN JOURNAL OF PSYCHOLOGY, 1939, 52 : 16 - 30
  • [42] ON THE SEQUENCE OF CLOSED-SET LATTICES OF A GRAPH
    KOH, KM
    POH, KS
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 285 - 291
  • [43] The lattice of congruence lattices of algebras on a finite set
    Danica Jakubíková-Studenovská
    Reinhard Pöschel
    Sándor Radeleczki
    Algebra universalis, 2018, 79
  • [44] On Set-Representable Orthocomplemented Difference Lattices
    Jianning Su
    Order, 2020, 37 : 621 - 636
  • [45] Maximum independent set on diluted triangular lattices
    Fay, C. W.
    Liu, J. W.
    Duxbury, P. M.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [46] OPEN SET LATTICES OF SUBSPACES OF SPECTRUM SPACES
    Nai, Yuan Ting
    Zhao, Dongsheng
    DEMONSTRATIO MATHEMATICA, 2015, 48 (04) : 637 - 652
  • [47] The lattice of congruence lattices of algebras on a finite set
    Jakubikova-Studenovska, Danica
    Poeschel, Reinhard
    Radeleczki, Sandor
    ALGEBRA UNIVERSALIS, 2018, 79 (01)
  • [48] PRODUCTS OF GRAPHS WITH THEIR CLOSED-SET LATTICES
    KOH, KM
    POH, KS
    DISCRETE MATHEMATICS, 1988, 69 (03) : 241 - 251
  • [49] SET-THEORETIC CHARACTERIZATION OF CONGRUENCE LATTICES
    ARMBRUST, M
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1970, 16 (05): : 417 - &
  • [50] Lattices of compatible relations satisfying a set of formulas
    I. Chajda
    B. Šešelja
    A. Tepavčević
    algebra universalis, 1998, 40 : 51 - 58