The remote set problem on lattices

被引:0
|
作者
Ishay Haviv
机构
[1] The Academic College of Tel Aviv-Yaffo,School of Computer Science
来源
computational complexity | 2015年 / 24卷
关键词
Lattices; covering radius; remote set problem; approximation algorithms; complexity classes; 68Q25; 11H06; 11H31;
D O I
暂无
中图分类号
学科分类号
摘要
We initiate studying the Remote Set Problem (RSP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{RSP}}$$\end{document}) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} outputs a set of points, at least one of which is logn/n·ρ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{\log n / n} \cdot \rho(\mathcal{L})}$$\end{document} -far from L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} , where ρ(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rho(\mathcal{L})}$$\end{document} stands for the covering radius of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} (i.e., the maximum possible distance of a point in space from L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}). As an application, we show that the covering radius problem with approximation factor n/logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{n / \log n}}$$\end{document} lies in the complexity class NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{NP}}$$\end{document} , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{\log n}}$$\end{document} .
引用
收藏
页码:103 / 131
页数:28
相关论文
共 50 条
  • [1] The remote set problem on lattices
    Haviv, Ishay
    COMPUTATIONAL COMPLEXITY, 2015, 24 (01) : 103 - 131
  • [2] The Variant of Remote Set Problem on Lattices
    Wang, Wenwen
    Lv, Kewei
    Liu, Jianing
    INFORMATION AND COMMUNICATIONS SECURITY, ICICS 2016, 2016, 9977 : 124 - 133
  • [3] RANDOM-WALKS ON LATTICES - THE PROBLEM OF VISITS TO A SET OF POINTS REVISITED
    RUBIN, RJ
    WEISS, GH
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (02) : 250 - 253
  • [4] COVER SET LATTICES
    ADAMS, ME
    SICHLER, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (05): : 1177 - 1205
  • [5] New Results on the Remote Set Problem and Its Applications in Complexity Study
    Chen, Yijie
    Lv, Kewei
    THEORY OF COMPUTING SYSTEMS, 2024, 68 (02) : 283 - 298
  • [6] New Results on the Remote Set Problem and Its Applications in Complexity Study
    Yijie Chen
    Kewei Lv
    Theory of Computing Systems, 2024, 68 : 283 - 298
  • [7] On reflexive closed set lattices
    Yang, Zhongqiang
    Zhao, Dongsheng
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (01): : 143 - 154
  • [8] The fixed set of a derivation in lattices
    Xin, Xiao Long
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [10] Remote imprinting of moiré lattices
    Gu, Jie
    Zhu, Jiacheng
    Knuppel, Patrick
    Watanabe, Kenji
    Taniguchi, Takashi
    Shan, Jie
    Mak, Kin Fai
    NATURE MATERIALS, 2024, 23 (02) : 219 - 223