Sentiment Analysis and Comprehensive Evaluation of Supervised Machine Learning Models Using Twitter Data on Russia–Ukraine War

被引:6
|
作者
Wadhwani G.K. [1 ]
Varshney P.K. [1 ]
Gupta A. [1 ]
Kumar S. [2 ]
机构
[1] Department of Computer Science, IITM, GGSIPU, New Delhi
[2] Department of Computer Science and Engineering, Shoolini University, Himachal Pradesh, Solan
关键词
Feature engineering; Machine learning; Sentiment analysis; Supervised machine learning models; Text classification;
D O I
10.1007/s42979-023-01790-5
中图分类号
学科分类号
摘要
The Russia–Ukrainian War refers to the ongoing hostilities between Russia and Ukraine. It was first focused on whether Crimea and the Donbass were formally recognised as being a part of Ukraine when Russia started it in February 2014. The conflict dramatically grew when Russia began its incursion of Ukraine on February 24, 2022, following a military build-up on the Russian–Ukrainian border that started in late 2021. Examining public perceptions of the crisis between Russia and Ukraine is the goal of this piece. These days, social media has taken on a significant role in communication, and as a result, opinions can be found on platforms like Facebook, Twitter, and Instagram. The study makes use of his 11,250 tweets about the war between Russia and Ukraine from his Twitter account. Techniques, including image processing, object identification, and natural language processing, have shown application, power, and potential for machine learning. The same applies to text analytics. For text analysis, sentiment analysis, and entity annotation, machine learning techniques are frequently employed. According to the applicability and efficacy of the machine learning model, natural language processing toolkit in python is utilised in to examine the textual polarity and subjectivity score of tweets. Moreover, because machine learning models have a high degree of classification accuracy, they have been widely utilised to categorise emotions. We have developed and test models using three feature extraction techniques: TF-IDF (term frequency-inverse document frequency), BoW (bag of words), and N-gram. Each model was assessed using a number of important performance indicators, including accuracy, precision, recall, and F1 score. Results show that the extra trees classifier (ETC) model achieves a highest accuracy of 0.84 in combination with the Bow property which is a measure to evaluate the efficacy of a machine learning algorithm. Logistic regression (LR), decision tree (DT), support vector machine (SVM), XGB, Gaussian naive base (GNB), ADA, and K-nearest neighbours (KNN) comparison have also been made. © 2023, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [31] Evolution and Evaluation: Sarcasm Analysis for Twitter Data Using Sentiment Analysis
    Bhakuni, Monika
    Kumar, Karan
    Iwendi, Celestine
    Singh, Avtar
    JOURNAL OF SENSORS, 2022, 2022
  • [32] Techniques for Sentiment Analysis of Twitter Data: A Comprehensive Survey
    Desai, Mitali
    Mehta, Mayuri A.
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2016, : 149 - 154
  • [33] Sentiment Analysis for Women in STEM using Twitter and Transfer Learning Models
    Fouad, Shereen
    Alkooheji, Ezzaldin
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 227 - 234
  • [34] Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers
    Cam, Handan
    Cam, Alper Veli
    Demirel, Ugur
    Ahmed, Sana
    HELIYON, 2024, 10 (01)
  • [35] Various Machine Learning Algorithms for Twitter Sentiment Analysis
    Singh, Rishija
    Goel, Vikas
    INFORMATION AND COMMUNICATION TECHNOLOGY FOR COMPETITIVE STRATEGIES, 2019, 40 : 763 - 772
  • [36] Review on sentiment analysis of movie reviews using machine learning techniques based on data available on Twitter
    Dangi, Dharmendra
    Bhagat, Amit
    Gupta, Jeetendra Kumar
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2024, 15 (05) : 253 - 259
  • [37] On Multi-Tier Sentiment Analysis using Supervised Machine Learning
    Moh, Melody
    Gajjala, Abhiteja
    Gangireddy, Siva Charan Reddy
    Moh, Teng-Sheng
    2015 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT), VOL 1, 2015, : 341 - 344
  • [38] Sentiment analysis of Twitter data during Farmers' Protest in India through Machine Learning
    Singh, Abhiraj
    Kalra, Nidhi
    Singh, Amritpal
    Sharma, Seemu
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 121 - 126
  • [39] Machine Learning Techniques for Sentiment Analysis of COVID-19-Related Twitter Data
    Braig, Niklas
    Benz, Alina
    Voth, Soeren
    Breitenbach, Johannes
    Buettner, Ricardo
    IEEE ACCESS, 2023, 11 : 14778 - 14803
  • [40] Optimal Machine Learning Driven Sentiment Analysis on COVID-19 Twitter Data
    Fakieh, Bahjat
    AL-Ghamdi, Abdullah S. AL-Malaise
    Saleem, Farrukh
    Ragab, Mahmoud
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 81 - 97