Momentum-space entanglement after smooth quenches

被引:0
|
作者
Daniel W. F. Alves
Giancarlo Camilo
机构
[1] São Paulo State University (UNESP),Institute for Theoretical Physics (IFT)
[2] University of California,Center for Quantum Mathematics and Physics, Department of Physics
[3] Universidade Federal do Rio Grande do Norte,International Institute of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We compute the total amount of entanglement produced between momentum modes at late times after a smooth mass quench in free bosonic and fermionic quantum field theories. The entanglement and Rényi entropies are obtained in closed form as a function of the parameters characterizing the quench protocol. For bosons, we show that the entanglement production is more significant for light modes and for fast quenches. In particular, infinitely slow or adiabatic quenches do not produce any entanglement. Depending on the quench profile, the decrease as a function of the quench rate δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta t$$\end{document} can be either monotonic or oscillating. In the fermionic case the situation is more subtle and there is a critical value for the quench amplitude above which this behavior is changed and the entropies become peaked at intermediate values of momentum and of the quench rate. We also show that the results agree with the predictions of a Generalized Gibbs Ensemble and obtain explicitly its parameters in terms of the quench data.
引用
收藏
相关论文
共 50 条
  • [21] Momentum-Space Scattering Extremizations
    Wen, Chunchao
    Zhang, Jianfa
    Qin, Shiqiao
    Zhu, Zhihong
    Liu, Wei
    LASER & PHOTONICS REVIEWS, 2024, 18 (01)
  • [22] APPLICATIONS OF MOMENTUM-SPACE SIMILARITY
    MEASURES, PT
    MORT, KA
    ALLAN, NL
    COOPER, DL
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1995, 9 (04) : 331 - 340
  • [23] Superselection rules, bosonization duality in 1+1 dimensions, and momentum-space entanglement
    Costa, Matheus H. Martins
    Nogueira, Flavio S.
    van den Brink, Jeroen
    PHYSICAL REVIEW D, 2024, 110 (10)
  • [24] REMARKS ON MOMENTUM-SPACE HYDROGENIC WAVEFUNCTIONS
    TALUKDAR, B
    DUTTA, J
    CHATTOPADHAY, HP
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1984, 17 (16) : 3211 - 3216
  • [25] Quantum optics of dielectrics in momentum-space
    Crenshaw, ME
    OPTICS COMMUNICATIONS, 2004, 235 (1-3) : 153 - 161
  • [26] RELATIVISTIC MESON SPECTROSCOPY IN MOMENTUM-SPACE
    HERSBACH, H
    PHYSICAL REVIEW C, 1994, 50 (05): : 2562 - 2575
  • [27] DIRECT MOMENTUM-SPACE CALCULATIONS FOR MOLECULES
    BERTHIER, G
    DEFRANCESCHI, M
    NAVAZA, J
    SUARD, M
    TSOUCARIS, G
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1985, 21 (FEB): : 343 - 350
  • [28] A MOMENTUM-SPACE APPROACH TO MOLECULAR SIMILARITY
    ALLAN, NL
    COOPER, DL
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1992, 32 (06): : 587 - 590
  • [29] NONLOCAL EFFECTIVE ACTION IN MOMENTUM-SPACE
    LEE, MH
    KIM, HC
    KIM, JK
    PHYSICAL REVIEW D, 1994, 49 (02): : 1130 - 1133
  • [30] Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms
    Evenbly, G.
    Vidal, G.
    NEW JOURNAL OF PHYSICS, 2010, 12