Local Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations

被引:0
|
作者
Xiaobing Feng
Thomas Lewis
机构
[1] The University of Tennessee,Department of Mathematics
[2] University of North Carolina at Greensboro,Department of Mathematics and Statistics
来源
关键词
Fully nonlinear PDEs; Viscosity solutions; Local discontinuous Galerkin methods; 65N30; 65M60; 35J60; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with developing accurate and efficient nonstandard discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic partial differential equations (PDEs) in the case of one spatial dimension. The primary goal of the paper to develop a general framework for constructing high order local discontinuous Galerkin (LDG) methods for approximating viscosity solutions of these fully nonlinear PDEs which are merely continuous functions by definition. In order to capture discontinuities of the first order derivative ux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_x$$\end{document} of the solution u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}, two independent functions q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^-$$\end{document} and q+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^+$$\end{document} are introduced to approximate one-sided derivatives of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document}. Similarly, to capture the discontinuities of the second order derivative uxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{xx}$$\end{document}, four independent functions p--,p-+,p+-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{- -}, p^{- +}, p^{+ -}$$\end{document}, and p++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{+ +}$$\end{document} are used to approximate one-sided derivatives of q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^-$$\end{document} and q+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^+$$\end{document}. The proposed LDG framework, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a given fully nonlinear problem into a mostly linear system of equations where the given nonlinear differential operator must be replaced by a numerical operator which allows multiple value inputs of the first and second order derivatives ux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_x$$\end{document} and uxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{xx}$$\end{document}. An easy to verify set of criteria for constructing “good” numerical operators is also proposed. It consists of consistency and generalized monotonicity. To ensure such a generalized monotonicity property, the crux of the construction is to introduce the numerical moment in the numerical operator, which plays a critical role in the proposed LDG framework. The generalized monotonicity gives the LDG methods the ability to select the viscosity solution among all possible solutions. The proposed framework extends a companion finite difference framework developed by Feng and Lewis (J Comp Appl Math 254:81–98, 2013) and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. Numerical experiments are also presented to demonstrate the accuracy, efficiency and utility of the proposed LDG methods.
引用
收藏
页码:129 / 157
页数:28
相关论文
共 50 条
  • [31] Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations
    Hongying Huang
    Zheng Chen
    Jin Li
    Jue Yan
    Journal of Scientific Computing, 2017, 70 : 744 - 765
  • [32] An oscillation free local discontinuous Galerkin method for nonlinear degenerate parabolic equations
    Tao, Qi
    Liu, Yong
    Jiang, Yan
    Lu, Jianfang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 3145 - 3169
  • [33] Uniqueness of numerical solutions to nonlinear parabolic equations by a fully implicit discontinuous Galerkin method
    Song, Lunji
    Ma, Jinhu
    APPLIED MATHEMATICS LETTERS, 2014, 37 : 77 - 81
  • [34] Local discontinuous Galerkin methods for elliptic problems
    Castillo, P
    Cockburn, B
    Perugia, I
    Schötzau, D
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (01): : 69 - 75
  • [35] UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    Lazarov, Raytcho
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1319 - 1365
  • [36] Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations
    Xiaobin Liu
    Dazhi Zhang
    Xiong Meng
    Boying Wu
    Journal of Scientific Computing, 2021, 87
  • [37] Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations
    Liu, Xiaobin
    Zhang, Dazhi
    Meng, Xiong
    Wu, Boying
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [38] Discontinuous Galerkin Methods for Nonlinear Parabolic Delay-Equations of Nonmonotone Type
    Devi, Raksha
    Pandey, Dwijendra Narain
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (02)
  • [39] Error Estimates on Hybridizable Discontinuous Galerkin Methods for Parabolic Equations with Nonlinear Coefficients
    Moon, Minam
    Jun, Hyung Kyu
    Suh, Tay
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [40] Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations
    Xu, Y
    Shu, CW
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) : 21 - 58