DeepMCGCN: Multi-channel Deep Graph Neural Networks

被引:0
|
作者
Lei Meng
Zhonglin Ye
Yanlin Yang
Haixing Zhao
机构
[1] Qinghai Normal University,College of Computer
[2] The State Key Laboratory of Tibetan Intelligent Information Processing and Application,undefined
关键词
Deep graph neural networks; Multi-relational graphs; Multi-channel interaction; Channel-level attention mechanism;
D O I
暂无
中图分类号
学科分类号
摘要
Graph neural networks (GNNs) have shown powerful capabilities in modeling and representing graph structural data across various graph learning tasks as an emerging deep learning approach. However, most existing GNNs focus on single-relational graphs and fail to fully utilize the rich and diverse relational information present in real-world graph data. In addition, deeper GNNs tend to suffer from overfitting and oversmoothing issues, leading to degraded model performance. To deeply excavate the multi-relational features in graph data and strengthen the modeling and representation abilities of GNNs, this paper proposes a multi-channel deep graph convolutional neural network method called DeepMCGCN. It constructs multiple relational subgraphs and adopts multiple GCN channels to learn the characteristics of different relational subgraphs separately. Cross-channel connections are utilized to obtain interactions between different relational subgraphs, which can learn node embeddings richer and more discriminative than single-channel GNNs. Meanwhile, it alleviates overfitting issues of deep models by optimizing convolution functions and adding residual connections between and within channels. The DeepMCGCN method is evaluated on three real-world datasets, and the experimental results show that its node classification performance outperforms that of single-channel GCN and other benchmark models, which improves the modeling and representation capabilities of the model.
引用
收藏
相关论文
共 50 条
  • [31] Multi-Channel Gaussian Derivative Neural Networks for Crowd Analysis
    Gavilima-Pilataxi, Hugo
    Ibarra-Fiallo, Julio
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [32] Multi-channel convolutional neural networks for materials properties prediction
    Zheng, Xiaolong
    Zheng, Peng
    Zheng, Liang
    Zhang, Yang
    Zhang, Rui-Zhi
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [33] Multi-channel handwritten digit recognition using neural networks
    Chi, ZR
    Lu, ZK
    Chan, FH
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 625 - 628
  • [34] Multi-Channel Recurrent Convolutional Neural Networks for Energy Disaggregation
    Kaselimi, Maria
    Protopapadakis, Eftychios
    Voulodimos, Athanasios
    Doulamis, Nikolaos
    Doulamis, Anastasios
    IEEE ACCESS, 2019, 7 : 81047 - 81056
  • [35] Quantum convolutional neural networks for multi-channel supervised learning
    Smaldone, Anthony M.
    Kyro, Gregory W.
    Batista, Victor S.
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (02)
  • [36] Efficient transfer learning for multi-channel convolutional neural networks
    de La Comble, Alois
    Prepin, Ken
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [37] Quantum convolutional neural networks for multi-channel supervised learning
    Anthony M. Smaldone
    Gregory W. Kyro
    Victor S. Batista
    Quantum Machine Intelligence, 2023, 5
  • [38] Multi-channel coronal hole detection with convolutional neural networks
    Jarolim, R.
    Veronig, A. M.
    Hofmeister, S.
    Heinemann, S. G.
    Temmer, M.
    Podladchikova, T.
    Dissauer, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 652
  • [39] Quaternion Neural Networks for Multi-channel Distant Speech Recognition
    Qiu, Xinchi
    Parcollet, Titouan
    Ravanelli, Mirco
    Lane, Nicholas D.
    Morchid, Mohamed
    INTERSPEECH 2020, 2020, : 329 - 333
  • [40] Dual-channel deep graph convolutional neural networks
    Ye, Zhonglin
    Li, Zhuoran
    Li, Gege
    Zhao, Haixing
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7