A Finite Buffer Fluid Queue Driven by a Markovian Queue

被引:0
|
作者
Bruno Sericola
机构
[1] IRISA-INRIA,Campus de Beaulieu
来源
Queueing Systems | 2001年 / 38卷
关键词
fluid queue; Markovian queue; Markov process; overflow probability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a finite buffer fluid queue receiving its input from the output of a Markovian queue with finite or infinite waiting room. The input flow into the fluid queue is thus characterized by a Markov modulated input rate process and we derive, for a wide class of such input processes, a procedure for the computation of the stationary buffer content of the fluid queue and the stationary overflow probability. This approach leads to a numerically stable algorithm for which the precision of the result can be specified in advance.
引用
下载
收藏
页码:213 / 220
页数:7
相关论文
共 50 条
  • [21] On multiserver feedback retrial queue with finite buffer
    Kumar, B. Krishna
    Rukmani, R.
    Thangaraj, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (04) : 2062 - 2083
  • [22] Proof of Monotone Loss Rate of Fluid Priority-Queue with Finite Buffer
    Stephen L. Spitler
    Daniel C. Lee
    Queueing Systems, 2005, 51 : 77 - 87
  • [23] Proof of monotone loss rate of fluid priority-queue with finite buffer
    Spitler, SL
    Lee, DC
    QUEUEING SYSTEMS, 2005, 51 (1-2) : 77 - 87
  • [24] Fluid Queue Driven by an M/M/1 Queue Subject to Catastrophes
    Vijayashree, K. V.
    Anjuka, A.
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, 2014, 246 : 285 - 291
  • [25] Simple analysis of a fluid queue driven by an M/M/1 queue
    Adan, I
    Resing, J
    QUEUEING SYSTEMS, 1996, 22 (1-2) : 171 - 174
  • [26] On the Finite Buffer Queue with Renewal Input and Batch Markovian Service Process: GI/BMSP/1/N
    A. D. Banik
    M. L. Chaudhry
    U. C. Gupta
    Methodology and Computing in Applied Probability, 2008, 10 : 559 - 575
  • [27] On the finite buffer queue with renewal input and batch Markovian service process:: GI/BMSP/1/N
    Banik, A. D.
    Chaudhry, M. L.
    Gupta, U. C.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2008, 10 (04) : 559 - 575
  • [28] ANALYSIS OF A FLUID QUEUE DRIVEN BY A QUEUE WITH MULTIPLE EXPONENTIAL VACATIONS AND IMPATIENT CUSTOMERS
    Sophia, S.
    Deepika, B. Muthu
    Lakshmi, S. R. Ananatha
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 15 (02): : 1 - 13
  • [29] Asymptotic behavior of the loss rate for Markov-modulated fluid queue with a finite buffer
    Sakuma, Yutaka
    Miyazawa, Masakiyo
    QUEUEING SYSTEMS, 2010, 65 (01) : 19 - 42
  • [30] Occupation times for the finite buffer fluid queue with phase-type ON-times
    Starreveld, N. J.
    Bekker, R.
    Mandjes, M.
    OPERATIONS RESEARCH LETTERS, 2018, 46 (01) : 27 - 32