The Cauchy Problem for the Two Layer Viscous Shallow Water Equations

被引:0
|
作者
Pengcheng Mu
Qiangchang Ju
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] Institute of Applied Physics and Computational Mathematics,undefined
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
two layer shallow water equations; global strong solution; hybrid Besov spaces; 76N10; 35Q35; 35B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data. The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs’ regularization method.
引用
收藏
页码:1783 / 1807
页数:24
相关论文
共 50 条
  • [41] A numerical method for the two layer shallow water equations with dry states
    Mandli, Kyle T.
    OCEAN MODELLING, 2013, 72 : 80 - 91
  • [42] A discontinuous Galerkin method for two-layer shallow water equations
    Izem, Nouh
    Seaid, Mohammed
    Wakrim, Mohamed
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 120 : 12 - 23
  • [43] ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 443 - 474
  • [44] Shallow water equations: viscous solutions and inviscid limit
    Gui-Qiang Chen
    Mikhail Perepelitsa
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 1067 - 1084
  • [45] Shallow water equations: viscous solutions and inviscid limit
    Chen, Gui-Qiang
    Perepelitsa, Mikhail
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06): : 1067 - 1084
  • [46] Cauchy problem for quasi-linear wave equations with viscous damping
    Zhijian, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 859 - 881
  • [47] Two-Layer Shallow Water Equations with Complete Coriolis Force and Topography
    Stewart, A. L.
    Dellar, P. J.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 1033 - 1038
  • [48] Numerical solution of the two-layer shallow water equations with bottom topography
    Salmon, R
    JOURNAL OF MARINE RESEARCH, 2002, 60 (04) : 605 - 638
  • [49] On the Cauchy problem for the shallow-water model with the Coriolis effect
    Mi, Yongsheng
    Liu, Yue
    Luo, Ting
    Guo, Boling
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (11) : 6370 - 6408
  • [50] Two layer shallow water equations for wave attenuation of a submerged porous breakwater
    Magdalena, Ikha
    Marcela, Indriana
    Karima, Nadhira
    Jonathan, Gabriel
    Harlan, Dhemi
    Adityawan, M. Bagus
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 454