The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact (shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Wang, Miao
Liu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, Italy
Rajola, Sandro
Tallini, Maria Scafati
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 2, I-00185 Rome, Italy