Acral melanoma detection using dermoscopic images and convolutional neural networks

被引:0
|
作者
Qaiser Abbas
Farheen Ramzan
Muhammad Usman Ghani
机构
[1] University of Engineering and Technology,Department of Computer Science
关键词
Deep learning; Acral melanoma; Skin cancer detection; Convolutional networks; Dermoscopic images; Medical image analysis; Computer based diagnosis;
D O I
暂无
中图分类号
学科分类号
摘要
Acral melanoma (AM) is a rare and lethal type of skin cancer. It can be diagnosed by expert dermatologists, using dermoscopic imaging. It is challenging for dermatologists to diagnose melanoma because of the very minor differences between melanoma and non-melanoma cancers. Most of the research on skin cancer diagnosis is related to the binary classification of lesions into melanoma and non-melanoma. However, to date, limited research has been conducted on the classification of melanoma subtypes. The current study investigated the effectiveness of dermoscopy and deep learning in classifying melanoma subtypes, such as, AM. In this study, we present a novel deep learning model, developed to classify skin cancer. We utilized a dermoscopic image dataset from the Yonsei University Health System South Korea for the classification of skin lesions. Various image processing and data augmentation techniques have been applied to develop a robust automated system for AM detection. Our custom-built model is a seven-layered deep convolutional network that was trained from scratch. Additionally, transfer learning was utilized to compare the performance of our model, where AlexNet and ResNet-18 were modified, fine-tuned, and trained on the same dataset. We achieved improved results from our proposed model with an accuracy of more than 90 % for AM and benign nevus, respectively. Additionally, using the transfer learning approach, we achieved an average accuracy of nearly 97 %, which is comparable to that of state-of-the-art methods. From our analysis and results, we found that our model performed well and was able to effectively classify skin cancer. Our results show that the proposed system can be used by dermatologists in the clinical decision-making process for the early diagnosis of AM.
引用
收藏
相关论文
共 50 条
  • [41] Automated skin lesion detection and classification using fused deep convolutional neural network on dermoscopic images
    Pramila, Rayappa Priyanka
    Subhashini, Radhakrishnan
    [J]. COMPUTATIONAL INTELLIGENCE, 2023, 39 (06) : 1073 - 1087
  • [42] Comprehensive analysis of clinical images contributions for melanoma classification using convolutional neural networks
    Rios-Duarte, Jorge A.
    Diaz-Valencia, Andres C.
    Combariza, German
    Feles, Miguel
    Pena-Silva, Ricardo A.
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2024, 30 (05)
  • [43] Skin lesion segmentation method for dermoscopic images with convolutional neural networks and semantic segmentation
    Thanh, Dang N. H.
    Nguyen Hoang Hai
    Le Minh Hieu
    Tiwari, Prayag
    Prasath, V. B. Surya
    [J]. COMPUTER OPTICS, 2021, 45 (01) : 122 - 129
  • [44] Melanoma Detection Using Convolutional Neural Network
    Zhang, Runyuan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 75 - 78
  • [45] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Ahmad Hameed
    Muhammad Umer
    Umair Hafeez
    Hassan Mustafa
    Ahmed Sohaib
    Muhammad Abubakar Siddique
    Hamza Ahmad Madni
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3551 - 3565
  • [46] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Hameed, Ahmad
    Umer, Muhammad
    Hafeez, Umair
    Mustafa, Hassan
    Sohaib, Ahmed
    Siddique, Muhammad Abubakar
    Madni, Hamza Ahmad
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3551 - 3565
  • [47] Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network
    Zafar, Kashan
    Gilani, Syed Omer
    Waris, Asim
    Ahmed, Ali
    Jamil, Mohsin
    Khan, Muhammad Nasir
    Kashif, Amer Sohail
    [J]. SENSORS, 2020, 20 (06)
  • [48] CONVOLUTIONAL NEURAL NETWORKS FOR LICENSE PLATE DETECTION IN IMAGES
    Kurpiel, Francisco Delmar
    Minetto, Rodrigo
    Nassu, Bogdan Tomoyuki
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3395 - 3399
  • [49] Deep Convolutional Neural Networks for Fire Detection in Images
    Sharma, Jivitesh
    Granmo, Ole-Christoffer
    Goodwin, Morten
    Fidje, Jahn Thomas
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 183 - 193
  • [50] An Efficient Machine Learning Approach for the Detection of Melanoma using Dermoscopic Images
    Waheed, Zahra
    Zafar, Madeeha
    Waheed, Amna
    Riaz, Farhan
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND DIGITAL SYSTEMS (C-CODE), 2017, : 316 - 319