The Rashba effect and non-Abelian phases in quantum wire devices

被引:0
|
作者
A. W. Cummings
R. Akis
D. K. Ferry
机构
[1] Arizona State University,Department of Electrical Engineering
来源
Journal of Computational Electronics | 2007年 / 6卷
关键词
Quantum transport; Rashba effect; Spin operations;
D O I
暂无
中图分类号
学科分类号
摘要
We present a 2D method for studying quantum transport through arbitrary geometries under the influence of both external magnetic fields and Rashba spin-orbit coupling. We apply this method to two geometries—a straight wire and a ring structure. Our results reveal the precession of spin-polarized modes in the straight wire, and conductance resonances in the ring due to phase shifts from the magnetic field and from the Rashba effect. The conductance resonances arising from the Rashba effect are due to the non-Abelian nature of the phase shifts acquired by electrons propagating around the ring.
引用
收藏
页码:101 / 104
页数:3
相关论文
共 50 条
  • [21] The non-Abelian bosonic quantum ring
    M. Merkl
    G. Juzeliūnas
    P. Öhberg
    The European Physical Journal D, 2010, 59 : 257 - 267
  • [22] The non-Abelian bosonic quantum ring
    Merkl, M.
    Juzeliunas, G.
    Oehberg, P.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 257 - 267
  • [23] Quantum Walks with Non-Abelian Anyons
    Lehman, Lauri
    Zatloukal, Vaclav
    Brennen, Gavin K.
    Pachos, Jiannis K.
    Wang, Zhenghan
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [24] Non-Abelian Statistics in a Quantum Antiferromagnet
    Greiter, Martin
    Thomale, Ronny
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [25] Non-abelian Quantum Statistics on Graphs
    Maciazek, Tomasz
    Sawicki, Adam
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 921 - 973
  • [26] Non-abelian Quantum Statistics on Graphs
    Tomasz Maciążek
    Adam Sawicki
    Communications in Mathematical Physics, 2019, 371 : 921 - 973
  • [27] Non-Abelian Quantum Hall Effect in Topological Flat Bands
    Wang, Yi-Fei
    Yao, Hong
    Gu, Zheng-Cheng
    Gong, Chang-De
    Sheng, D. N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (12)
  • [28] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2017, 96 (22)
  • [29] Non-Abelian Geometric Phases in Photonics and their Optimal Design Strategy Based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [30] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834