Semi-streaming algorithms for submodular matroid intersection

被引:0
|
作者
Paritosh Garg
Linus Jordan
Ola Svensson
机构
[1] EPFL,
来源
Mathematical Programming | 2023年 / 197卷
关键词
Matroid Intersection; Submodular Functions; Semi-Streaming Algorithms; 68W27; 05B35; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
While the basic greedy algorithm gives a semi-streaming algorithm with an approximation guarantee of 2 for the unweighted matching problem, it was only recently that Paz and Schwartzman obtained an analogous result for weighted instances. Their approach is based on the versatile local ratio technique and also applies to generalizations such as weighted hypergraph matchings. However, the framework for the analysis fails for the related problem of weighted matroid intersection and as a result the approximation guarantee for weighted instances did not match the factor 2 achieved by the greedy algorithm for unweighted instances.Our main result closes this gap by developing a semi-streaming algorithm with an approximation guarantee of 2+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+\varepsilon $$\end{document} for weighted matroid intersection, improving upon the previous best guarantee of 4+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4+\varepsilon $$\end{document}. Our techniques also allow us to generalize recent results by Levin and Wajc on submodular maximization subject to matching constraints to that of matroid-intersection constraints. While our algorithm is an adaptation of the local ratio technique used in previous works, the analysis deviates significantly and relies on structural properties of matroid intersection, called kernels. Finally, we also conjecture that our algorithm gives a (k+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+\varepsilon )$$\end{document} approximation for the intersection of k matroids but prove that new tools are needed in the analysis as the structural properties we use fail for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document}.
引用
收藏
页码:967 / 990
页数:23
相关论文
共 50 条
  • [31] Streaming Algorithms for Constrained Submodular Maximization
    Cui S.
    Han K.
    Tang J.
    Huang H.
    Li X.
    Li Z.
    [J]. Performance Evaluation Review, 2023, 51 (01): : 65 - 66
  • [32] Streaming algorithms for robust submodular maximization
    Yang, Ruiqi
    Xu, Dachuan
    Cheng, Yukun
    Wang, Yishui
    Zhang, Dongmei
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 290 : 112 - 122
  • [33] A Simple Semi-Streaming Algorithm for Global Minimum Cuts
    Assadi, Sepehr
    Dudeja, Aditi
    [J]. 2021 SYMPOSIUM ON SIMPLICITY IN ALGORITHMS, SOSA, 2021, : 172 - 180
  • [34] Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms
    Friedrich, Tobias
    Neumann, Frank
    [J]. EVOLUTIONARY COMPUTATION, 2015, 23 (04) : 543 - 558
  • [35] Exact and approximation algorithms for weighted matroid intersection
    Chien-Chung Huang
    Naonori Kakimura
    Naoyuki Kamiyama
    [J]. Mathematical Programming, 2019, 177 : 85 - 112
  • [36] Determinant Maximization via Matroid Intersection Algorithms
    Brown, Adam
    Laddha, Aditi
    Pittu, Madhusudhan
    Singh, Mohit
    Tetali, Prasad
    [J]. 2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 255 - 266
  • [37] EFFICIENT ALGORITHMS FOR A FAMILY OF MATROID INTERSECTION PROBLEMS
    GABOW, HN
    TARJAN, RE
    [J]. JOURNAL OF ALGORITHMS, 1984, 5 (01) : 80 - 131
  • [38] EFFICIENT ALGORITHMS FOR GRAPHIC MATROID INTERSECTION AND PARITY
    GABOW, HN
    STALLMANN, M
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1985, 194 : 210 - 220
  • [39] Exact and approximation algorithms for weighted matroid intersection
    Huang, Chien-Chung
    Kakimura, Naonori
    Kamiyama, Naoyuki
    [J]. MATHEMATICAL PROGRAMMING, 2019, 177 (1-2) : 85 - 112
  • [40] Valuated matroid intersection .2. Algorithms
    Murota, K
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (04) : 562 - 576