Self-Propagating High-Temperature Synthesis of Layered Composite Ti/Hf/Ta/Ni/Ceramics Materials

被引:0
|
作者
Kamynina, O. K. [1 ]
Vadchenko, S. G. [2 ]
Kovalev, I. D. [2 ]
Prokhorov, D. V. [1 ]
机构
[1] Russian Acad Sci, Osipyan Inst Solid State Phys, Chernogolovka 142432, Russia
[2] Russian Acad Sci, Merzhanov Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Russia
基金
俄罗斯基础研究基金会;
关键词
self-propagating high-temperature synthesis; combustion; layered composite materials; reaction tapes; Ti; Hf; Ta; cermet; INTERLAYER INTERFACIAL MICROSTRUCTURE; MECHANICAL-PROPERTIES; NI INTERLAYER; TI; COMBUSTION; TITANIUM; TA; HF; CERAMICS; BEHAVIOR;
D O I
10.1134/S0010508224010118
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes the compounds of refractory metal foils (Ti, Hf, Ta, and Ni) with ceramic layers formed as a result of combustion of reaction tapes rolled from Ti + 0.65C, Ti + 1.7B, and 5Ti + 3Si powder mixtures. Scanning electron microscopy and X-ray diffraction analysis are applied to study the microstructure, elemental composition, and phase composition of multilayer composites obtained by self-propagating high-temperature synthesis. The effect of synthesis conditions (initial temperature and applied pressure) and the initial structure of the samples on various parameters (combustion wave front propagation velocity, microstructure, phase composition, and strength properties) of the resulting layered materials is revealed. It is shown that compounds of metal foils and reaction tapes rolled from powder mixtures during combustion are ensured due to reaction diffusion, mutual impregnation, and chemical reactions occurring in the reaction tapes and on the surface of metal foils. The strength properties of the resulting materials (up to 275 MPa at 25 degrees C and up to 72 MPa at 1100 degrees C) are determined using a three-point loading scheme. The results of this study can contribute to the development of structural materials operating under extreme conditions.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 50 条
  • [31] Self-propagating high-temperature synthesis of (W, Ti) C powders
    Jinfeng Li
    Ziqiao Zheng
    Zhao Zhang
    Journal of Central South University of Technology, 1999, 6 (2): : 124 - 126
  • [32] Self-Propagating High-Temperature Synthesis of a Ti–Al–Mn Alloy
    P. A. Lazarev
    M. L. Busurina
    O. D. Boyarchenko
    D. Yu. Kovalev
    A. E. Sychev
    Inorganic Materials, 2023, 59 : 677 - 683
  • [33] Microstructural evolution during self-propagating high-temperature synthesis of TiC-Ti composite
    Xiao, GQ
    Fan, QC
    Gu, MZ
    Jin, ZH
    RARE METAL MATERIALS AND ENGINEERING, 2005, 34 (10) : 1592 - 1596
  • [34] SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS OF NI3AL
    LEBRAT, JP
    VARMA, A
    COMBUSTION SCIENCE AND TECHNOLOGY, 1993, 88 (3-4) : 211 - 222
  • [35] Self-propagating high-temperature synthesis welding
    Duan, Huiping
    Li, Shujie
    Gongju Jishu/Tool Engineering, 1999, 33 (09): : 6 - 9
  • [36] Ni-Al functionally graded materials by laser self-propagating high-temperature synthesis
    Chen, L
    Hu, JD
    Guo, ZX
    Lou, QH
    Wang, ZJ
    MATERIALS TRANSACTIONS, 2004, 45 (09) : 2791 - 2793
  • [37] Composite material for surfacing, obtained by self-propagating high-temperature synthesis
    Luzan, S. O.
    Sytnykov, P. A.
    FUNCTIONAL MATERIALS, 2023, 30 (04): : 526 - 532
  • [38] Self-propagating high-temperature synthesis of quasicrystals
    Korchagin, MA
    Bokhonov, BB
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2004, 40 (04) : 438 - 444
  • [39] Self-propagating high-temperature synthesis of TiN
    Wang, Weimin
    Xiu, Man
    Mei, Bingchu
    Wuhan Gongye Daxue Xuebao/Journal of Wuhan University of Technology, 1995, 17 (03):
  • [40] SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS OF FERRITES
    NERSESYAN, MD
    AVAKYAN, PB
    MARTIROSYAN, KS
    KOMAROV, AV
    MERZHANOV, AG
    INORGANIC MATERIALS, 1993, 29 (12) : 1506 - 1508