A Regularity Criterion for the 2D Full Compressible MHD Equations with Zero Heat Conductivity

被引:0
|
作者
Xiuhui Yang
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics, College of Science
来源
关键词
2D full compressible MHD equations; Bounded domain; Regularity criterion; 35Q60; 35B44; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish a regularity criterion for the 2D full compressible MHD equations with zero heat conductivity and initial vacuum in a bounded domain.
引用
收藏
页码:523 / 531
页数:8
相关论文
共 50 条
  • [21] Regularity Criterion for the 2D Inviscid Boussinesq Equations
    Gong, Menghan
    Ye, Zhuan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (04)
  • [22] Regularity Criterion for the 2D Inviscid Boussinesq Equations
    Menghan Gong
    Zhuan Ye
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [23] Global regularity of 2D almost resistive MHD equations
    Yuan, Baoquan
    Zhao, Jiefeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 53 - 65
  • [24] Remarks on global regularity of 2D generalized MHD equations
    Yuan, Baoquan
    Bai, Linna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 633 - 640
  • [25] REMARKS ON REGULARITY CRITERIA FOR 2D GENERALIZED MHD EQUATIONS
    Ye, Zhuan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (04) : 1333 - 1353
  • [26] On the regularity criterion for the 2D Boussinesq equations involving the temperature
    Ye, Zhuan
    APPLICABLE ANALYSIS, 2016, 95 (03) : 615 - 626
  • [27] An improved regularity criterion for the 2D inviscid Boussinesq equations
    Ye, Zhuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 3095 - 3098
  • [28] A Regularity Criterion for the 3D Generalized MHD Equations
    Jishan Fan
    Ahmed Alsaedi
    Tasawar Hayat
    Gen Nakamura
    Yong Zhou
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 333 - 340
  • [29] A Regularity Criterion for the 3D Generalized MHD Equations
    Fan, Jishan
    Alsaedi, Ahmed
    Hayat, Tasawar
    Nakamura, Gen
    Zhou, Yong
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) : 333 - 340
  • [30] Local existence with low regularity for the 2D compressible Euler equations
    Zhang, Huali
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (03) : 701 - 728