Data-driven distributionally robust chance-constrained optimization with Wasserstein metric

被引:0
|
作者
Ran Ji
Miguel A. Lejeune
机构
[1] George Mason University,Department of Systems Engineering and Operations Research
[2] George Washington University,Department of Decision Sciences
来源
关键词
Distributionally robust optimization; Chance-constrained programming; Wasserstein metric; Mixed-integer programming;
D O I
暂无
中图分类号
学科分类号
摘要
We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to all types of distributionally robust chance-constrained optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. For the uncertain probabilities (UP) case, we provide new mixed-integer linear programming reformulations for DRCCP problems. For the continuum of realizations case with random right-hand side, we propose an exact mixed-integer second-order cone programming (MISOCP) reformulation and a linear programming (LP) outer approximation. For the continuum of realizations (CR) case with random technology vector, we propose two MISOCP and LP outer approximations. We show that all proposed relaxations become exact reformulations when the decision variables are binary or bounded general integers. For DRCCP with individual chance constraint and random right-hand side under both the UP and CR cases, we also propose linear programming reformulations which need the ex-ante derivation of the worst-case value-at-risk via the solution of a finite series of linear programs determined via a bisection-type procedure. We evaluate the scalability and tightness of the proposed MISOCP and (MI)LP formulations on a distributionally robust chance-constrained knapsack problem.
引用
收藏
页码:779 / 811
页数:32
相关论文
共 50 条
  • [1] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ji, Ran
    Lejeune, Miguel A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 779 - 811
  • [2] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166
  • [3] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Xin Dai
    Liang Zhao
    Renchu He
    Wenli Du
    Weimin Zhong
    Zhi Li
    Feng Qian
    [J]. Chinese Journal of Chemical Engineering, 2024, (05) - 166
  • [4] Distributionally robust joint chance-constrained programming with Wasserstein metric
    Gu, Yining
    Wang, Yanjun
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023,
  • [5] Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric
    Duan, Chao
    Fang, Wanliang
    Jiang, Lin
    Yao, Li
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 4924 - 4936
  • [6] Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
    Masoume Mahmoodi
    Seyyed Mahdi Noori Rahim Abadi
    Ahmad Attarha
    Paul Scott
    Lachlan Blackhall
    [J]. Journal of Modern Power Systems and Clean Energy., 2024, 12 (01) - 127
  • [7] Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
    Mahmoodi, Masoume
    Abadi, Seyyed Mahdi Noori Rahim
    Attarha, Ahmad
    Scott, Paul
    Blackhall, Lachlan
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (01) : 115 - 127
  • [8] Wasserstein distributionally robust chance-constrained program with moment information
    Luo, Zunhao
    Yin, Yunqiang
    Wang, Dujuan
    Cheng, T. C. E.
    Wu, Chin -Chia
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2023, 152
  • [9] Data-Driven Distributionally Robust Chance-Constrained Unit Commitment With Uncertain Wind Power
    Shi, Zhichao
    Liang, Hao
    Dinavahi, Venkata
    [J]. IEEE ACCESS, 2019, 7 : 135087 - 135098
  • [10] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602