Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment

被引:2
|
作者
Mahmoodi, Masoume [1 ]
Abadi, Seyyed Mahdi Noori Rahim [1 ]
Attarha, Ahmad [1 ]
Scott, Paul [1 ]
Blackhall, Lachlan [1 ]
机构
[1] Australian Natl Univ, Coll Engn & Comp Sci, Canberra, Australia
关键词
Distributed generation (DG) capacity assessment; distributionally robust optimisation; chance-constrained optimisation; distribution system; POWER-FLOW; RANDOMIZED SOLUTIONS; OPTIMIZATION; ENERGY;
D O I
10.35833/MPCE.2023.000029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation (DG). However, the DG capacity of a distribution system is often underestimated due to either overly conservative electrical demand and DG output uncertainty modelling or neglecting the recourse capability of the available components. To improve the accuracy of DG capacity assessment, this paper proposes a distributionally adjustable robust chance-constrained approach that utilises uncertainty information to reduce the conservativeness of conventional robust approaches. The proposed approach also enables fast-acting devices such as inverters to adjust to the real-time realisation of uncertainty using the adjustable robust counterpart methodology. To achieve a tractable formulation, we first define uncertain chance constraints through distributionally robust conditional value-at-risk (CVaR), which is then reformulated into convex quadratic constraints. We subsequently solve the resulting large-scale, yet convex, model in a distributed fashion using the alternating direction method of multipliers (ADMM). Through numerical simulations, we demonstrate that the proposed approach outperforms the adjustable robust and conventional distributionally robust approaches by up to 15% and 40%, respectively, in terms of total installed DG capacity.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [1] Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
    Masoume Mahmoodi
    Seyyed Mahdi Noori Rahim Abadi
    Ahmad Attarha
    Paul Scott
    Lachlan Blackhall
    [J]. Journal of Modern Power Systems and Clean Energy, 2024, (01) - 127
  • [2] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ran Ji
    Miguel A. Lejeune
    [J]. Journal of Global Optimization, 2021, 79 : 779 - 811
  • [3] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ji, Ran
    Lejeune, Miguel A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 779 - 811
  • [4] Data-Driven Distributionally Robust Chance-Constrained Unit Commitment With Uncertain Wind Power
    Shi, Zhichao
    Liang, Hao
    Dinavahi, Venkata
    [J]. IEEE ACCESS, 2019, 7 : 135087 - 135098
  • [5] Frequency Constrained Scheduling Under Multiple Uncertainties via Data-Driven Distributionally Robust Chance-Constrained Approach
    Yang, Lun
    Li, Zhihao
    Xu, Yinliang
    Zhou, Jianguo
    Sun, Hongbin
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (02) : 763 - 776
  • [6] Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid
    Zhai, Junyi
    Wang, Sheng
    Guo, Lei
    Jiang, Yuning
    Kang, Zhongjian
    Jones, Colin N.
    [J]. APPLIED ENERGY, 2022, 326
  • [7] Data-Driven Joint Distributionally Robust Chance-Constrained Operation for Multiple Integrated Electricity and Heating Systems
    Zhai, Junyi
    Jiang, Yuning
    Zhou, Ming
    Shi, Yuanming
    Chen, Wei
    Jones, Colin N.
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (03) : 1782 - 1798
  • [8] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Xin Dai
    Liang Zhao
    Renchu He
    Wenli Du
    Weimin Zhong
    Zhi Li
    Feng Qian
    [J]. Chinese Journal of Chemical Engineering., 2024, 69 (05) - 166
  • [9] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166
  • [10] On Distributionally Robust Chance-Constrained Linear Programs
    G. C. Calafiore
    L. El Ghaoui
    [J]. Journal of Optimization Theory and Applications, 2006, 130 : 1 - 22