Analytic Features of Reproducing Groups for the Metaplectic Representation

被引:0
|
作者
Elena Cordero
Filippo De Mari
Krzysztof Nowak
Anita Tabacco
机构
[1] Dipartimento di Matematica,
[2] Universita di Torino,undefined
[3] Via Carlo Alberto,undefined
[4] 10 10123 Torino,undefined
[5] Dipartimento di Matematica,undefined
[6] Universita di Genova,undefined
[7] Via Dodecaneso,undefined
[8] 35 16146 Genova,undefined
[9] Department of Computer Science,undefined
[10] Drexel University,undefined
[11] 3141 Chestnut Street,undefined
[12] Philadelphia,undefined
[13] PA 19104,undefined
[14] Dipartimento di Matematica,undefined
[15] Politecnico di Torino,undefined
[16] Corso Duca degli Abruzzi,undefined
[17] 24 10129 Torino,undefined
关键词
Heisenberg Group; Semidirect Product; Symplectic Group; Wigner Distribution; Admissibility Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of admissible subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G={\mathbb H}^d\rtimes Sp(d,{\mathbb R})$\end{document} relative to the (extended) metaplectic representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_e$\end{document} via the Wigner distribution. Under mild additional assumptions, it is shown to be equivalent to the fact that the identity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=\int_{H}\langle f,\mu_e(h)\phi\rangle\mu_e(h)\phi\;dh$\end{document} holds (weakly) for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in L^2({\mathbb R}^d).$\end{document} We use this equivalence to exhibit classes of admissible subgroups of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Sp(2,{\mathbb R}).$\end{document} We also establish some connections with wavelet theory, i.e., with curvelet and contourlet frames.
引用
收藏
页码:157 / 180
页数:23
相关论文
共 50 条