Analytic Features of Reproducing Groups for the Metaplectic Representation

被引:0
|
作者
Elena Cordero
Filippo De Mari
Krzysztof Nowak
Anita Tabacco
机构
[1] Dipartimento di Matematica,
[2] Universita di Torino,undefined
[3] Via Carlo Alberto,undefined
[4] 10 10123 Torino,undefined
[5] Dipartimento di Matematica,undefined
[6] Universita di Genova,undefined
[7] Via Dodecaneso,undefined
[8] 35 16146 Genova,undefined
[9] Department of Computer Science,undefined
[10] Drexel University,undefined
[11] 3141 Chestnut Street,undefined
[12] Philadelphia,undefined
[13] PA 19104,undefined
[14] Dipartimento di Matematica,undefined
[15] Politecnico di Torino,undefined
[16] Corso Duca degli Abruzzi,undefined
[17] 24 10129 Torino,undefined
关键词
Heisenberg Group; Semidirect Product; Symplectic Group; Wigner Distribution; Admissibility Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of admissible subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G={\mathbb H}^d\rtimes Sp(d,{\mathbb R})$\end{document} relative to the (extended) metaplectic representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu_e$\end{document} via the Wigner distribution. Under mild additional assumptions, it is shown to be equivalent to the fact that the identity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f=\int_{H}\langle f,\mu_e(h)\phi\rangle\mu_e(h)\phi\;dh$\end{document} holds (weakly) for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in L^2({\mathbb R}^d).$\end{document} We use this equivalence to exhibit classes of admissible subgroups of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Sp(2,{\mathbb R}).$\end{document} We also establish some connections with wavelet theory, i.e., with curvelet and contourlet frames.
引用
收藏
页码:157 / 180
页数:23
相关论文
共 50 条
  • [1] Analytic features of reproducing groups for the metaplectic representation
    Cordero, Elena
    De Mari, Filippo
    Nowak, Krzysztof
    Tabacco, Anita
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (02) : 157 - 180
  • [2] Reproducing groups for the metaplectic representation
    Cordero, E.
    De Mari, F.
    Nowak, K.
    Tabacco, A.
    PSEUDO-DIFFERENTIAL OPERATORS AND RELATED TOPICS, 2006, 164 : 227 - +
  • [3] Weil Representation and Metaplectic Groups over an Integral Domain
    Chinello, Gianmarco
    Turchetti, Daniele
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2388 - 2419
  • [4] On the Weyl representation of metaplectic operators
    De Gosson, MA
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 72 (02) : 129 - 142
  • [5] WEYL QUANTIZATION AND METAPLECTIC REPRESENTATION
    BURDET, G
    PERRIN, M
    LETTERS IN MATHEMATICAL PHYSICS, 1977, 2 (02) : 93 - 99
  • [6] Strichartz estimates for the metaplectic representation
    Cauli, Alessandra
    Nicola, Fabio
    Tabacco, Anita
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (07) : 2079 - 2092
  • [7] On the complexified affine metaplectic representation
    Rask, O
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 : 191 - 193
  • [8] On the Weyl Representation of Metaplectic Operators
    Maurice A. De. Gosson
    Letters in Mathematical Physics, 2005, 72 : 129 - 142
  • [9] R-groups for metaplectic groups
    Marcela Hanzer
    Israel Journal of Mathematics, 2019, 231 : 467 - 488
  • [10] R-groups for metaplectic groups
    Hanzer, Marcela
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 231 (01) : 467 - 488