How to Find the Holonomy Algebra of a Lorentzian Manifold

被引:0
|
作者
Anton S. Galaev
机构
[1] University of Hradec Králové,Faculty of Science
来源
关键词
Lorentzian manifold; holonomy group; holonomy algebra; de Rham-Wu decomposition; 53C29; 53C25; 53C50; 81T30;
D O I
暂无
中图分类号
学科分类号
摘要
Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de Rham and Wu decompositions, this problem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If the holonomy algebra g⊂so(1,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}\subset\mathfrak{so}(1,n-1)}$$\end{document} of a locally indecomposable Lorentzian manifold (M, g) of dimension n is different from so(1,n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{so}(1,n-1)}$$\end{document}, then it is contained in the similitude algebra sim(n-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sim}(n-2)}$$\end{document}. There are four types of such holonomy algebras. Criterion to find the type of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} is given, and special geometric structures corresponding to each type are described. To each g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} there is a canonically associated subalgebra h⊂so(n-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{h} \subset\mathfrak{so}(n-2)}$$\end{document}. An algorithm to find h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{h}}$$\end{document} is provided.
引用
收藏
页码:199 / 219
页数:20
相关论文
共 50 条
  • [21] LORENTZIAN ALGEBRA FOR THE SUPERSTRING
    KOSTELECKY, VA
    LECHTENFELD, O
    PHYSICAL REVIEW LETTERS, 1987, 59 (02) : 169 - 172
  • [22] NULL HYPERSURFACES OF A LORENTZIAN MANIFOLD
    ROSCA, R
    TENSOR, 1972, 23 (01): : 66 - &
  • [23] Spin(7) holonomy manifold and superconnection
    Yasui, Y
    Ootsuka, T
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (05) : 807 - 816
  • [24] The α′ expansion on a compact manifold of exceptional holonomy
    Katrin Becker
    Daniel Robbins
    Edward Witten
    Journal of High Energy Physics, 2014
  • [25] Estimates for the Volume of a Lorentzian Manifold
    Claus Gerhardt
    General Relativity and Gravitation, 2003, 35 : 201 - 207
  • [26] Estimates for the volume of a Lorentzian manifold
    Gerhardt, C
    GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (02) : 201 - 207
  • [27] A new geometry of a Lorentzian manifold
    Papuc, DI
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (1-2): : 145 - 158
  • [28] AN ANALOG OF THE HOLONOMY BUNDLE FOR A FOLIATED MANIFOLD
    BLUMENTHAL, RA
    HEBDA, JJ
    TOHOKU MATHEMATICAL JOURNAL, 1988, 40 (02) : 189 - 197
  • [29] Face Recognition on Lorentzian Manifold
    Bilge, Hasan Sakir
    Guzel, Ceren
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [30] The α' expansion on a compact manifold of exceptional holonomy
    Becker, Katrin
    Robbins, Daniel
    Witten, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06): : 1 - 35