Weakly supervised object extraction with iterative contour prior for remote sensing images

被引:0
|
作者
Chu He
Yu Zhang
Bo Shi
Xin Su
Xin Xu
Mingsheng Liao
机构
[1] Wuhan University,School of Electronic Information
[2] Wuhan University,The State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing
[3] Telecom ParisTech,Institut Telecom
[4] LTCI,undefined
关键词
Object Detection; Segmentation Result; Markov Random Field; Conditional Random Field; Object Segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a weakly supervised approach based on Markov random field model for the extraction of objects (e.g., aircrafts) in optical remote sensing images. This approach is capable of localizing and then segmenting objects in optical remote sensing images by relying only on several object samples without artificial labels. However, unlike direct combinations of object detection and segmentation, the proposed method develops a contour prior model based on detection results, thereby improving segmentation performance. Furthermore, we iteratively update the contour prior information based on the expectation-maximization algorithm. Numerical experiments illustrate that the proposed method can successfully be applied to the extraction of aircrafts in optical remote sensing images.
引用
收藏
相关论文
共 50 条
  • [31] Multiple Instance Graph Learning for Weakly Supervised Remote Sensing Object Detection
    Wang, Binglu
    Zhao, Yongqiang
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Multiple Instance Graph Learning for Weakly Supervised Remote Sensing Object Detection
    Wang, Binglu
    Zhao, Yongqiang
    Li, Xuelong
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [33] Scribble-Based Weakly Supervised Deep Learning for Road Surface Extraction From Remote Sensing Images
    Wei, Yao
    Ji, Shunping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] High-Quality Instance Mining and Dynamic Label Assignment for Weakly Supervised Object Detection in Remote Sensing Images
    Zeng, Li
    Huo, Yu
    Qian, Xiaoliang
    Chen, Zhiwu
    [J]. ELECTRONICS, 2023, 12 (13)
  • [35] Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning
    Han, Junwei
    Zhang, Dingwen
    Cheng, Gong
    Guo, Lei
    Ren, Jinchang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3325 - 3337
  • [36] Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images
    Huang, Zhou
    Xiang, Tian-Zhu
    Chen, Huai-Xin
    Dai, Hang
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 191 : 290 - 301
  • [37] Leveraging Physical Rules for Weakly Supervised Cloud Detection in Remote Sensing Images
    Liu, Yang
    Li, Qingyong
    Li, Xiaobao
    He, Shuyi
    Liang, Fengjiao
    Yao, Zhigang
    Jiang, Jun
    Wang, Wen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] PANet: Pixelwise Affinity Network for Weakly Supervised Building Extraction From High-Resolution Remote Sensing Images
    Yan, Xin
    Shen, Li
    Wang, Jicheng
    Wang, Yong
    Li, Zhilin
    Xu, Zhu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [39] Collaborative Learning-Based Network for Weakly Supervised Remote Sensing Object Detection
    Chen, Suting
    Wang, Hangjiang
    Mukherjee, Mithun
    Xu, Xin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7907 - 7918
  • [40] Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images
    Yu, Supeng
    Huang, Fen
    Fan, Chengcheng
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 549 - 562