Weighted preferences in evolutionary multi-objective optimization

被引:0
|
作者
Tobias Friedrich
Trent Kroeger
Frank Neumann
机构
[1] Max-Planck-Institut für Informatik,School of Computer Science
[2] The University of Adelaide,undefined
关键词
Evolutionary algorithms; Multi-objective optimization; User preferences;
D O I
暂无
中图分类号
学科分类号
摘要
Evolutionary algorithms have been widely used to tackle multi-objective optimization problems. Incorporating preference information into the search of evolutionary algorithms for multi-objective optimization is of great importance as it allows one to focus on interesting regions in the objective space. Zitzler et al. have shown how to use a weight distribution function on the objective space to incorporate preference information into hypervolume-based algorithms. We show that this weighted information can easily be used in other popular EMO algorithms as well. Our results for NSGA-II and SPEA2 show that this yields similar results to the hypervolume approach and requires less computational effort.
引用
收藏
页码:139 / 148
页数:9
相关论文
共 50 条
  • [21] Noise handling in evolutionary multi-objective optimization
    Goh, C. K.
    Tan, K. C.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1339 - +
  • [22] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    [J]. International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75
  • [23] Interleaving Guidance in Evolutionary Multi-Objective Optimization
    Lam Thu Bui
    Kalyanmoy Deb
    Hussein A.Abbass
    Daryl Essam
    [J]. Journal of Computer Science & Technology, 2008, 23 (01) : 44 - 63
  • [24] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [25] Interleaving guidance in evolutionary multi-objective optimization
    Bui, Lam Thu
    Deb, Kalyanmoy
    Abbass, Hussein A.
    Essam, Daryl
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2008, 23 (01) : 44 - 63
  • [26] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    [J]. Vicinagearth, 1 (1):
  • [27] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [28] A hierarchical evolutionary approach to multi-objective optimization
    Mumford, CL
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1944 - 1951
  • [29] A study on multiform multi-objective evolutionary optimization
    Liangjie Zhang
    Yuling Xie
    Jianjun Chen
    Liang Feng
    Chao Chen
    Kai Liu
    [J]. Memetic Computing, 2021, 13 : 307 - 318
  • [30] A Parallel Framework for Multi-objective Evolutionary Optimization
    Dasgupta, Dipankar
    Becerra, David
    Banceanu, Alex
    Nino, Fernando
    Simien, James
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,