The rigidity on the second fundamental form of projective manifolds

被引:0
|
作者
Ping Li
机构
[1] Tongji University,School of Mathematical Sciences
来源
manuscripta mathematica | 2020年 / 163卷
关键词
53C24; 53C55; 14N30;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complex n-dimensional projective manifold in Pn+r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^{n+r}$$\end{document} endowed with the Fubini-Study metric of constant holomorphic sectional curvature 1, σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} its second fundamental form, and |σ|̲2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{|\sigma |}^2$$\end{document} the mean value of the squared length of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} on M. We derive a formula for |σ|̲2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{|\sigma |}^2$$\end{document} and classify them when |σ|̲2≤2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{|\sigma |}^2\le 2n$$\end{document}. We present several applications to these results. The first application is to confirm a conjecture of Loi and Zedda, which characterizes the linear subspace and the quadric in terms of the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. The second application is to improve a result of Cheng solving an old conjecture of Oguie from pointwise case to mean case. The third application is to give an optimal second gap value on |σ|̲2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{|\sigma |}^2$$\end{document}, which can be viewed as a complex analog to those on minimal submanifolds in the unit spheres.
引用
收藏
页码:113 / 123
页数:10
相关论文
共 50 条
  • [31] VARIATIONAL PROBLEMS FOR INTEGRAL INVARIANTS OF THE SECOND FUNDAMENTAL FORM OF A MAP BETWEEN PSEUDO-RIEMANNIAN MANIFOLDS
    Akiyama, Rika
    Sakai, Takashi
    Sato, Yuichiro
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (04) : 873 - 901
  • [32] Abelian covers and the second fundamental form
    Frediani, Paola
    MANUSCRIPTA MATHEMATICA, 2024, 175 (1-2) : 267 - 291
  • [33] INNER GEOMETRY OF SECOND FUNDAMENTAL FORM
    SIMON, U
    MICHIGAN MATHEMATICAL JOURNAL, 1972, 19 (02) : 129 - &
  • [34] Immersions with Bounded Second Fundamental Form
    Patrick Breuning
    The Journal of Geometric Analysis, 2015, 25 : 1344 - 1386
  • [35] Immersions with Bounded Second Fundamental Form
    Breuning, Patrick
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1344 - 1386
  • [36] SEMIGROUP PROPERTIES FOR THE SECOND FUNDAMENTAL FORM
    Wang, Feng-Yu
    DOCUMENTA MATHEMATICA, 2010, 15 : 527 - 543
  • [37] A Discrete Representation of the Second Fundamental Form
    Carriazo, Alfonso
    Fernandez, Luis M.
    Ramirez-de-Arellano, Antonio
    MATHEMATICS, 2022, 10 (13)
  • [38] MINIMAL SURFACES OF SECOND FUNDAMENTAL FORM
    GLASSNER, E
    MONATSHEFTE FUR MATHEMATIK, 1974, 78 (03): : 193 - 214
  • [39] ON SUBMANIFOLDS WITH TAMED SECOND FUNDAMENTAL FORM
    Bessa, G. Pacelli
    Costa, M. Silvana
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 669 - 680
  • [40] THE MEAN CURVATURE OF THE SECOND FUNDAMENTAL FORM
    Haesen, Stuan
    Verpoort, Steven
    Verstraelen, Leopold
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (03): : 703 - 719