Coexistence of Two Species in a Strongly Coupled Schoener’s Competitive Model

被引:0
|
作者
Peng Zhu
Wenzhen Gan
Zhigui Lin
机构
[1] Yangzhou University,School of Mathematical Science
[2] Jiangsu Teachers University of Technology,Department of Basic Courses
来源
关键词
Schoener’s competitive model; Strongly coupled; Coexistence; 35B35; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the existence of positive solution to a strongly coupled system with homogeneous Dirichlet boundary conditions describing a Schoener’s competitive interaction of two species. Making use of the Schauder fixed point theorem, a sufficient condition is given for the system to have a coexistence. And true solutions are constructed based on monotone iterative method. Our results show that this model possesses at least one coexistence state if cross-diffusions and intra-specific competitions are weak.
引用
收藏
页码:469 / 476
页数:7
相关论文
共 50 条
  • [31] Coexistence and segregation for strongly competing species in special domains
    Conti, Monica
    Felli, Veronica
    [J]. INTERFACES AND FREE BOUNDARIES, 2008, 10 (02) : 173 - 195
  • [32] Shape coexistence and strongly coupled bands in 118Sb
    Wang, S. Y.
    Qi, B.
    Sun, D. P.
    Ren, X. L.
    Duan, B. T.
    Chen, F.
    Liu, C.
    Xu, C. J.
    Liu, L.
    Hua, H.
    Li, Z. Y.
    Yao, J. M.
    Zhu, L. H.
    Wu, X. G.
    Li, G. S.
    Liu, Y.
    Li, X. Q.
    Zheng, Y.
    Wang, L. L.
    Wang, L.
    [J]. PHYSICAL REVIEW C, 2010, 82 (05):
  • [33] DAPHNIA SPECIES INVASION, COMPETITIVE EXCLUSION, AND CHAOTIC COEXISTENCE
    Wang, Hao
    Dunning, Katherine
    Elser, James J.
    Kuang, Yang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (02): : 481 - 493
  • [34] Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species
    Zhang, Yanhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 720 - 726
  • [35] On the strongly competitive case in a fully parabolic two-species chemotaxis system with Lotka-Volterra competitive kinetics
    Pan, Xu
    Mu, Chunlai
    Tao, Weirun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 354 : 90 - 132
  • [36] Multilayer network structure enhances the coexistence of competitive species
    Li, Cong
    Feng, Tian-Jiao
    Zhang, He-Lin
    Chen, Da-Hua
    Cressman, Ross
    Liao, Jin-Bao
    Tao, Yi
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [37] Species coexistence, intransitivity, and topological variation in competitive tournaments
    Laird, Robert A.
    Schamp, Brandon S.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 256 (01) : 90 - 95
  • [38] On convergence to equilibrium in strongly coupled Bogoliubov's oscillator model
    Strokov, V.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2007, 10 (04) : 573 - 589
  • [39] Spin-dependent coexistence of weakly coupled and strongly coupled modes in semiconductor microcavities
    Ballarini, D.
    Amo, A.
    Martin, M. D.
    Vina, L.
    Sanvitto, D.
    Skolnick, M. S.
    Roberts, J. S.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2007, 41 (5-6) : 321 - 327
  • [40] STRONGLY COUPLED STANDARD MODEL
    CLAUDSON, M
    FARHI, E
    JAFFE, RL
    [J]. PHYSICAL REVIEW D, 1986, 34 (03): : 873 - 887