Semisimple varieties of implication zroupoids

被引:0
|
作者
Juan M. Cornejo
Hanamantagouda P. Sankappanavar
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] INMABB,Department of Mathematics
[3] CONICET,undefined
[4] State University of New York,undefined
来源
Soft Computing | 2016年 / 20卷
关键词
Semisimple Varieties; Kleene Algebra; Sankappanavar; Simple Algebra; Original Axioms;
D O I
暂无
中图分类号
学科分类号
摘要
It is a well known fact that Boolean algebras can be defined using only implication and a constant. In fact, in 1934, Bernstein (Trans Am Math Soc 36:876–884, 1934) gave a system of axioms for Boolean algebras in terms of implication only. Though his original axioms were not equational, a quick look at his axioms would reveal that if one adds a constant, then it is not hard to translate his system of axioms into an equational one. Recently, in 2012, the second author of this paper extended this modified Bernstein’s theorem to De Morgan algebras (see Sankappanavar, Sci Math Jpn 75(1):21–50, 2012). Indeed, it is shown in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) that the varieties of De Morgan algebras, Kleene algebras, and Boolean algebras are term-equivalent, respectively, to the varieties, DM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {DM}$$\end{document}, KL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {KL}$$\end{document}, and BA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {BA}$$\end{document} whose defining axioms use only the implication →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document} and the constant 0. The fact that the identity, herein called (I), occurs as one of the two axioms in the definition of each of the varieties DM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {DM}$$\end{document}, KL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {KL}$$\end{document} and BA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {BA}$$\end{document} motivated the second author of this paper to introduce, and investigate, the variety I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document} of implication zroupoids, generalizing De Morgan algebras. These investigations are continued by the authors of the present paper in Cornejo and Sankappanavar (Implication zroupoids I, 2015), wherein several new subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document} are introduced and their relationships with each other and with the varieties studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) are explored. The present paper is a continuation of Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) and Cornejo and Sankappanavar (Implication zroupoids I, 2015). The main purpose of this paper is to determine the simple algebras in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document}. It is shown that there are exactly five (nontrivial) simple algebras in I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document}. From this description we deduce that the semisimple subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document} are precisely the subvarieties of the variety generated by these simple I-zroupoids and that they are locally finite. It also follows that the lattice of semisimple subvarieties of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {I}$$\end{document} is isomorphic to the direct product of a 4-element Boolean lattice and a 4-element chain.
引用
收藏
页码:3139 / 3151
页数:12
相关论文
共 50 条
  • [41] The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand-Zetlin Polytope
    Harada, Megumi
    Horiguchi, Tatsuya
    Masuda, Mikiya
    Park, Seonjeong
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (01) : 318 - 344
  • [42] Toward Permutation Bases in the Equivariant Cohomology Rings of Regular Semisimple Hessenberg Varieties
    Harada M.
    Precup M.
    Tymoczko J.
    La Matematica, 2022, 1 (1): : 263 - 316
  • [43] Families of rationally simply connected varieties over surfaces and torsors for semisimple groups
    A. J. de Jong
    Xuhua He
    Jason Michael Starr
    Publications mathématiques de l'IHÉS, 2011, 114 : 1 - 85
  • [45] The Manin-Peyre conjecture for smooth spherical Fano varieties of semisimple rank one
    Blomer, Valentin
    Bruedern, Joerg
    Derenthal, Ulrich
    Gagliardi, Giuliano
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [46] REPRESENTATIONS OF SEMISIMPLE LIE-ALGEBRAS ARISING FROM COHOMOLOGY OF ALGEBRAIC-VARIETIES
    ZARHIN, YG
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1986, 31 (02): : 163 - 174
  • [47] Geometry of the twin manifolds of regular semisimple Hessenb erg varieties and unicellular LLT polynomials
    Kiem, Young-Hoon
    Lee, Donggun
    ALGEBRAIC COMBINATORICS, 2024, 7 (03):
  • [48] The cohomology rings of regular semisimple Hessenberg varieties for h = (h(1), n, . . . , n)
    Abe, Hiraku
    Horiguchi, Tatsuya
    Masuda, Mikiya
    JOURNAL OF COMBINATORICS, 2019, 10 (01) : 27 - 59
  • [49] SEMISIMPLE SUBGROUPS OF SEMISIMPLE GROUPS
    STONE, AP
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (01) : 29 - &
  • [50] A PROOF OF THE BAUM-CONNES CONJECTURE FOR REAL SEMISIMPLE LIE GROUPS WITH COEFFICIENTS ON FLAG VARIETIES
    Wei, Zhaoting
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (04): : 389 - 404