Families of optimal packings in real and complex Grassmannian spaces

被引:0
|
作者
Tomáš Kocák
Martin Niepel
机构
[1] Comenius University,Faculty of Mathematics, Physics and Informatics
[2] INRIA Lille - Nord Europe,undefined
[3] SequeL team,undefined
来源
关键词
Grassmannian packings; Optimal packings; Hadamard matrices; Rankin bound; Chordal distance; Space-time codes; Primary 51F25; 51M20; 52C17; Secondary 15A30; 15B34; 94B60; 14M15;
D O I
暂无
中图分类号
学科分类号
摘要
A construction based on a 4l×4l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4l \times 4l$$\end{document} Hadamard matrix leads to a new family of optimal orthoplex packings in Grassmannian spaces GR(8l,4l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {R}}(8l, 4l)$$\end{document} and GC(4l,2l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {C}}(4l, 2l)$$\end{document}. A related construction gives an optimal simplex packings in GR(8l-1,4l-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {R}}(8 l-1, 4 l - 1)$$\end{document} and GR(8l-1,4l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {R}}(8l-1, 4l)$$\end{document} with the additional assumption of an 8l×8l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8l \times 8l$$\end{document} skew Hadamard matrix and a related 1-factorization of a complete graph. A construction of a maximal optimal simplex packings in GC(2l-1,l-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {C}}(2l-1, l- 1)$$\end{document} and GC(2l-1,l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\mathbb {C}}(2l-1,l)$$\end{document} is given.
引用
收藏
页码:129 / 148
页数:19
相关论文
共 50 条