Equality of Schur and Skew Schur Functions

被引:0
|
作者
Stephanie van Willigenburg
机构
[1] University of British Columbia,Department of Mathematics
来源
Annals of Combinatorics | 2005年 / 9卷
关键词
05E05; 05E10; Schur function; skew Schur function; Littlewood-Richardson coefficients;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the precise conditions under which any skew Schur function is equal to a Schur function over both infinitely and finitely many variables.
引用
收藏
页码:355 / 362
页数:7
相关论文
共 50 条
  • [31] Generalized Schur functions and augmented Schur parameters
    Dijksma, Aad
    Wanjala, Gerald
    [J]. OPERATOR THEORY IN KREIN SPACES AND NONLINEAR EIGENVALUE PROBLEMS, 2006, 162 : 135 - 144
  • [32] Composition of transpositions and equality of ribbon Schur Q-functions
    Barekat, Farzin
    van Willigenburg, Stephanie
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [33] Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes
    King, Ronald C.
    Welsh, Trevor A.
    van Willigenburg, Stephanie J.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) : 139 - 167
  • [34] Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions
    Bessenrodt, Christine
    Tewari, Vasu
    van Willigenburg, Stephanie
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 : 179 - 206
  • [35] Factorial Supersymmetric Skew Schur Functions and Ninth Variation Determinantal Identities
    Angèle M. Foley
    Ronald C. King
    [J]. Annals of Combinatorics, 2021, 25 : 229 - 253
  • [36] The Schur algorithm and coefficient characterizations for generalized Schur functions
    Constantinescu, T
    Gheondea, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2705 - 2713
  • [37] Factorial Supersymmetric Skew Schur Functions and Ninth Variation Determinantal Identities
    Foley, Angele M.
    King, Ronald C.
    [J]. ANNALS OF COMBINATORICS, 2021, 25 (02) : 229 - 253
  • [38] Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes
    Ronald C. King
    Trevor A. Welsh
    Stephanie J. van Willigenburg
    [J]. Journal of Algebraic Combinatorics, 2008, 28 : 139 - 167
  • [39] Stretched skew Schur polynomials are recurrent
    Alexandersson, Per
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 122 : 1 - 8
  • [40] CHARACTERIZATION OF SCHUR PARAMETER SEQUENCES OF POLYNOMIAL SCHUR FUNCTIONS
    Dubovoy, Vladimir K.
    Fritzsche, Bernd
    Kirstein, Bernd
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (04): : 289 - 310