Extremes of Some Gaussian Random Interfaces

被引:0
|
作者
Alberto Chiarini
Alessandra Cipriani
Rajat Subhra Hazra
机构
[1] Technische Universität,
[2] Weierstrass Institute,undefined
[3] Indian Statistical Institute,undefined
来源
关键词
Gaussian free field; Interfaces; Membrane model; Extremes; Stein–Chen method;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we give a general criterion for some dependent Gaussian models to belong to maximal domain of attraction of Gumbel, following an application of the Stein–Chen method studied in Arratia et al. (Ann Probab 17(1):9–25, 1989). We also show the convergence of the associated point process. As an application, we show the conditions are satisfied by some of the well-known supercritical Gaussian interface models, namely, membrane model, massive and massless discrete Gaussian free field, fractional Gaussian free field.
引用
收藏
页码:521 / 544
页数:23
相关论文
共 50 条
  • [1] Extremes of Some Gaussian Random Interfaces
    Chiarini, Alberto
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (03) : 521 - 544
  • [2] EXTREMES OF HOMOGENEOUS GAUSSIAN RANDOM FIELDS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Soja-Kukiela, Natalia
    [J]. JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) : 55 - 67
  • [3] Extremes of Gaussian Processes with Random Variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Zhang, Yueming
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1254 - 1280
  • [4] The limit theorems on extremes for Gaussian random fields
    Tan, Zhongquan
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 436 - 444
  • [5] Extremes of Gaussian fields with a smooth random variance
    Popivoda, Goran
    Stamatovic, Sinisa
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 110 : 185 - 190
  • [6] Extremes of Gaussian processes with a smooth random variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Rumyantseva, Ekaterina
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2592 - 2605
  • [7] Extremes of Shepp statistics for Gaussian random walk
    Dmitrii Zholud
    [J]. Extremes, 2009, 12
  • [8] Extremes of Gaussian Processes with a Smooth Random Trend
    Piterbarg, Vladimir
    Popivoda, Goran
    Stamatovic, Sinisa
    [J]. FILOMAT, 2017, 31 (08) : 2267 - 2279
  • [9] EXTREMES OF A CLASS OF NONHOMOGENEOUS GAUSSIAN RANDOM FIELDS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    [J]. ANNALS OF PROBABILITY, 2016, 44 (02): : 984 - 1012
  • [10] Extremes of Shepp statistics for Gaussian random walk
    Zholud, Dmitrii
    [J]. EXTREMES, 2009, 12 (01) : 1 - 17