Updating the regularization parameter in the adaptive cubic regularization algorithm

被引:0
|
作者
N. I. M. Gould
M. Porcelli
P. L. Toint
机构
[1] Rutherford Appleton Laboratory,Computational Science and Engineering Department
[2] FUNDP-University of Namur,Namur Center for Complex Systems (NAXYS)
关键词
Unconstrained optimization; Cubic regularization; Numerical performance;
D O I
暂无
中图分类号
学科分类号
摘要
The adaptive cubic regularization method (Cartis et al. in Math. Program. Ser. A 127(2):245–295, 2011; Math. Program. Ser. A. 130(2):295–319, 2011) has been recently proposed for solving unconstrained minimization problems. At each iteration of this method, the objective function is replaced by a cubic approximation which comprises an adaptive regularization parameter whose role is related to the local Lipschitz constant of the objective’s Hessian. We present new updating strategies for this parameter based on interpolation techniques, which improve the overall numerical performance of the algorithm. Numerical experiments on large nonlinear least-squares problems are provided.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] Updating the regularization parameter in the adaptive cubic regularization algorithm
    Gould, N. I. M.
    Porcelli, M.
    Toint, P. L.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 1 - 22
  • [2] Adaptive updating of regularization parameters
    Hashemi, SayedMasoud
    Beheshti, Soosan
    Cobbold, Richard S. C.
    Paul, Narinder
    [J]. SIGNAL PROCESSING, 2015, 113 : 228 - 233
  • [3] Adaptive Relaxation Regularization Algorithm for Nonlinear Parameter Estimation
    Qu, Guoqing
    Sun, Zhen
    Su, Xiaoqing
    Du, Cunpeng
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (10): : 1491 - 1497
  • [4] An efficient numerical algorithm with adaptive regularization for parameter estimations
    Zhuang, X
    Zhu, J
    [J]. INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, : 299 - 308
  • [5] Adaptive Regularization Parameter for Pseudo Affine Projection Algorithm
    Ban, Sung Jun
    Lee, Chang Woo
    Kim, Sang Woo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (05) : 382 - 385
  • [6] Scalable adaptive cubic regularization methods
    Dussault, Jean-Pierre
    Migot, Tangi
    Orban, Dominique
    [J]. MATHEMATICAL PROGRAMMING, 2024, 207 (1-2) : 191 - 225
  • [7] A filter sequential adaptive cubic regularization algorithm for nonlinear constrained optimization
    Pei, Yonggang
    Song, Shaofang
    Zhu, Detong
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (04) : 1481 - 1507
  • [8] A filter sequential adaptive cubic regularization algorithm for nonlinear constrained optimization
    Yonggang Pei
    Shaofang Song
    Detong Zhu
    [J]. Numerical Algorithms, 2023, 93 : 1481 - 1507
  • [9] A robust target tracking algorithm based on spatial regularization and adaptive updating model
    Chen, Kansong
    Guo, Xiang
    Xu, Lijun
    Zhou, Tian
    Li, Ran
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 285 - 299
  • [10] A robust target tracking algorithm based on spatial regularization and adaptive updating model
    Kansong Chen
    Xiang Guo
    Lijun Xu
    Tian Zhou
    Ran Li
    [J]. Complex & Intelligent Systems, 2023, 9 : 285 - 299