Adaptive updating of regularization parameters

被引:4
|
作者
Hashemi, SayedMasoud [1 ]
Beheshti, Soosan [2 ]
Cobbold, Richard S. C. [1 ]
Paul, Narinder [1 ,3 ]
机构
[1] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada
[2] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
[3] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
来源
SIGNAL PROCESSING | 2015年 / 113卷
关键词
Parameter-free compressed sensing; Regularization parameter update; Noise invalidation; Denoising; IMAGE; SELECTION;
D O I
10.1016/j.sigpro.2015.02.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Iterative minimization of an objective function is usually used for restoring a signal from its noisy measurements. The performance of such iterative algorithms is controlled by regularization parameters, such as Lagrange multipliers. Inappropriate choice of these parameters can either trap the algorithm in local minima and/or lead to a lower convergence rate. We propose a Noise Confidence Region Evaluation (NCRE) algorithm, which adaptively adjusts the regularization parameters. The adjustment is based on evaluation and comparison of error residuals and the considered noise statistics, at the end of each iteration. Moreover, it stops the iterations when the statistical characteristics of the residual match those of the considered noise. NCRE can be used with different algorithms, such as: wavelet soft thresholding, Total Variation denoising, Iterative Soft Thresholding compressed sensing recovery, that have been explained in this paper. In addition, NCRE enables Block Matching and 3D filtering denoising method to be used in an iterative scheme applied on low dose computed tomography images. simulation results showed advantages of the NCRE in improving the performance of the discussed methods in sense of image quality and mean squared error. Moreover, NCRE enables these algorithms to converge in fewer iterations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 233
页数:6
相关论文
共 50 条
  • [1] Updating the regularization parameter in the adaptive cubic regularization algorithm
    N. I. M. Gould
    M. Porcelli
    P. L. Toint
    [J]. Computational Optimization and Applications, 2012, 53 : 1 - 22
  • [2] Updating the regularization parameter in the adaptive cubic regularization algorithm
    Gould, N. I. M.
    Porcelli, M.
    Toint, P. L.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 1 - 22
  • [3] Adaptive Tikhonov regularization for damage detection based on nonlinear model updating
    Li, X. Y.
    Law, S. S.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (06) : 1646 - 1664
  • [4] Regularization in model updating
    Titurus, B.
    Friswell, M. I.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (04) : 440 - 478
  • [5] A robust target tracking algorithm based on spatial regularization and adaptive updating model
    Chen, Kansong
    Guo, Xiang
    Xu, Lijun
    Zhou, Tian
    Li, Ran
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 285 - 299
  • [6] A robust target tracking algorithm based on spatial regularization and adaptive updating model
    Kansong Chen
    Xiang Guo
    Lijun Xu
    Tian Zhou
    Ran Li
    [J]. Complex & Intelligent Systems, 2023, 9 : 285 - 299
  • [7] Updating structural parameters: An adaptive neural network approach
    Chang, TYP
    Chang, CC
    Xu, YG
    [J]. STRUCTURAL HEALTH MONTORING 2000, 1999, : 379 - 389
  • [8] A NEW ADAPTIVE LAW USING REGULARIZATION PARAMETERS FOR ROBUST ADAPTATION
    OHMORI, H
    SANO, A
    [J]. PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 1563 - 1565
  • [9] Adaptive Tikhonov Regularization for Simultaneous Identification of Structural Parameters and Input
    Zhang, Kun
    Guo, Xiao-hui
    [J]. INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND CIVIL ENGINEERING, MSCE 2016, 2016, : 494 - 500
  • [10] Adaptive regularization parameter optimization in output-error-based finite element model updating
    Hua, X. G.
    Ni, Y. Q.
    Ko, J. M.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (03) : 563 - 579