The d'Alembert functional equation on metabelian groups

被引:0
|
作者
Corovei I. [1 ]
机构
[1] Technical University, Dept. of Mathematics, 3400 Cluj-Napoca
关键词
General Solution; Functional Equation; Complex Number; Multiplicative Group; Present Note;
D O I
10.1007/s000100050077
中图分类号
学科分类号
摘要
Consider the d'Alembert functional equation f(xy) + f(xy-1) = 2f(x)f(y) for f : G → K where G is a group and K is a field with characteristic ≠ 2. Pl. Kannappan has proved that for K = ℂ, the field of complex numbers, any non-zero solution of d'Alembert's equation which satisfies the condition f(xyz) = f(xzy), ∀x, y, z ∈ G has the form f(x) = g(x) + [g(x)]-1/2 where g is a homomorphism of G into the multiplicative group of ℂ. Investigations of d'Alembert's equation on non-abelian groups led to solutions of the equation not having the form (*). In the present note we obtain the general solution of d'Alembert's equation when G is a metabelian group, and we show that there exist solutions which do not have the form (*). © Birkhäuser Verlag, Basel, 1999.
引用
收藏
页码:201 / 205
页数:4
相关论文
共 50 条
  • [21] d’Alembert’s other functional equation on monoids with an involution
    Bruce Ebanks
    Henrik Stetkær
    Aequationes mathematicae, 2015, 89 : 187 - 206
  • [22] The superstability of d'Alembert's functional equation on the Heisenberg group
    Bouikhalene, B.
    Elqorachi, E.
    Rassias, J. M.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (01) : 105 - 109
  • [23] PERIODIC SOLUTIONS OF D'ALEMBERT'S FUNCTIONAL EQUATION.
    Hirano, Tetsutaro
    Report of the College of Engineering of Hosei University, 1983, (22): : 1 - 9
  • [24] A note on d’Alembert’s functional equation on a restricted domain
    Anna Bahyrycz
    Janusz Brzdȩk
    Aequationes mathematicae, 2014, 88 : 169 - 173
  • [25] A VARIANT OF D'ALEMBERT'S FUNCTIONAL EQUATION ON SEMIGROUPS WITH ENDOMORPHISMS
    Akkaoui, Ahmed
    El Fatini, Mohamed
    Fadli, Brahim
    ANNALES MATHEMATICAE SILESIANAE, 2022, 36 (01) : 1 - 14
  • [26] A generalization of d’Alembert’s other functional equation on semigroups
    Omar Ajebbar
    Elhoucien Elqorachi
    Aequationes mathematicae, 2020, 94 : 913 - 930
  • [27] A generalization of d'Alembert's other functional equation on semigroups
    Ajebbar, Omar
    Elqorachi, Elhoucien
    AEQUATIONES MATHEMATICAE, 2020, 94 (05) : 913 - 930
  • [28] d'Alembert's other functional equation on monoids with an involution
    Ebanks, Bruce
    Stetkaer, Henrik
    AEQUATIONES MATHEMATICAE, 2015, 89 (01) : 187 - 206
  • [29] A note on d'Alembert's functional equation on a restricted domain
    Bahyrycz, Anna
    Brzdek, Janusz
    AEQUATIONES MATHEMATICAE, 2014, 88 (1-2) : 169 - 173
  • [30] On generalized Gajda's functional equation of D'Alembert type
    Bouikhalene, Belaid
    Elqorachi, Elhoucein
    Bakali, Allal
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (03) : 293 - 313