Numerical analysis in the shock synthesis of EuBa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_3$\end{document}O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_y$\end{document}

被引:0
|
作者
Hideaki Hikosaka
Keiji Kusaba
Yasuhiko Syono
Langdon S. Bennett
Katsumi Tanaka
Masahide Katayama
机构
[1] Institute for Materials Research,
[2] Tohoku University,undefined
[3] Katahira 2-1-1,undefined
[4] Sendai 980-8577,undefined
[5] Japan ,undefined
[6] Los Alamos National Laboratory,undefined
[7] Los Alamos,undefined
[8] NM 87545,undefined
[9] USA ,undefined
[10] National Institute of Materials and Chemical Research,undefined
[11] Tsukuba 305-8565,undefined
[12] Japan ,undefined
[13] CRC Research Institute Inc.,undefined
[14] Koto-ku,undefined
[15] Tokyo 136-8581,undefined
[16] Japan ,undefined
关键词
Key words:Shock synthesis, Shock recovery experiments, High $T_{\rm c}$ oxides, EuBa $_2$Cu $_3$O $_y$, Numerical calculation, Mach reflection;
D O I
10.1007/s001930050155
中图分类号
学科分类号
摘要
Numerical calculations using two material models, a P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\alpha$\end{document} model and the VIR model with and without reaction, were applied for the shock synthesis of EuBa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_3$\end{document}O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_y$\end{document}. The shock wave was reflected from the back rim of the sample due to a faster shock wave velocity in the container than in the sample, achieving very high pressure. The temperature calculated in the outer area of the 3-mm-thick sample was higher than that of the center region because of single compression due to Mach reflection. The calculated temperature distribution in the 1-mm-thick samples was less remarkable than in the 3-mm-thick samples. The temperature calculated using the VIR model with reaction was higher than that of the P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\alpha$\end{document} model without reaction due to the occurrence of exothermic reaction. The result of a shock recovery experiment from a 3-mm-thick sample indicated that the yield of EuBa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_2$\end{document}Cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_3$\end{document}O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $_y$\end{document} phase in the outer area of the sample was larger than that of the central area. The large yield in the outer area was consistent with the result of numerical calculation. A more-homogeneous temperature distribution achieved in a 1-mm-thick sample than in a 3 mm thick sample indicated that the aspect ratio of the sample room is important for shock synthesis experiments.
引用
收藏
页码:201 / 207
页数:6
相关论文
共 50 条