Hirota equation and Bethe ansatz

被引:0
|
作者
A. V. Zabrodin
机构
[1] Russian Academy of Sciences,Joint Institute of Chemical Physics
[2] Institute for Theoretical and Experimental Physics,undefined
来源
关键词
Bethe Equation; Quantum Space; Auxiliary Space; Elliptic Solution; Hirota Equation;
D O I
暂无
中图分类号
学科分类号
摘要
Recent analyses of classical integrable structures in quantum integrable models solved by various versions of the Bethe ansatz are reviewed. Similarities between elements of quantum and classical theories of integrable systems are discussed. Some key ideas in quantum theory, now standard in the quantum inverse scattering method, are identified with typical constructions in classical soliton theory. Functional relations for quantum transfer matrices become the classical Hirota bilinear difference equation; solving this classical equation gives all the basic results for the spectral properties of quantum systems. Vice versa, typical Bethe ansatz formulas under certain boundary conditions yield solutions of this classical equation. The Baxter T-Q relation and its generalizations arise as auxiliary linear problems for the Hirota equation.
引用
收藏
页码:782 / 819
页数:37
相关论文
共 50 条
  • [31] Discrete thermodynamic Bethe ansatz
    Bergère, M
    Imura, KI
    Ouvry, S
    NUCLEAR PHYSICS B, 2001, 608 (03) : 577 - 590
  • [32] Persistent Currents and Bethe Ansatz
    Kirsanskas, G.
    Matulis, A.
    ACTA PHYSICA POLONICA A, 2011, 119 (02) : 158 - 160
  • [33] Universal Bethe Ansatz and Scalar Products of Bethe Vectors
    Belliard, Samuel
    Pakuliak, Stanislav
    Ragoucy, Eric
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [34] Introduction to the thermodynamic Bethe ansatz
    van Tongeren, Stijn J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (32)
  • [35] INTRODUCTION TO ALGEBRAIC BETHE ANSATZ
    TAKHTAJAN, LA
    LECTURE NOTES IN PHYSICS, 1985, 242 : 175 - 219
  • [36] Bethe ansatz for quantum strings
    Arutyunov, G
    Frolov, S
    Staudacher, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10): : 295 - 315
  • [37] ON A NONLINEAR SCHRODINGER-EQUATION IN AN EXTERNAL-FIELD - A BETHE ANSATZ APPROACH
    SEN, S
    CHOWDHURY, AR
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (05) : 1511 - 1513
  • [38] Solution of Radial Schrodinger Equation with Yukawa Potential Using Bethe Ansatz Method
    Sabet, M. Mohammadi
    ACTA PHYSICA POLONICA A, 2021, 140 (01) : 97 - 102
  • [39] Discrete thermodynamic Bethe ansatz
    Bergére, M
    Imura, KI
    Ouvry, S
    Electronic Correlations: From Meso- to Nano-Physics, 2001, : 319 - 322
  • [40] THE YANGIANS, BETHE ANSATZ AND COMBINATORICS
    KIRILLOV, AN
    RESHETIKHIN, NY
    LETTERS IN MATHEMATICAL PHYSICS, 1986, 12 (03) : 199 - 208