On a Two-Species Attraction–Repulsion Chemotaxis System with Nonlocal Terms

被引:0
|
作者
Pan Zheng
Runlin Hu
Wenhai Shan
机构
[1] Chongqing University of Posts and Telecommunications,College of Science
[2] The Chinese University of Hong Kong,Department of Mathematics
[3] Yunnan University,School of Mathematics and Statistics
来源
关键词
Two-species; Attraction–repulsion; Boundedness; Stability; Nonlocal kinetics; 35B35; 35B40; 35K15; 35K55; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a two-species attraction–repulsion chemotaxis system ut=d1Δu-ξ1∇·(u∇v)+χ1∇·(u∇z)+g1(u,w),(x,t)∈Ω×(0,∞),τvt=d2Δv+w-v,(x,t)∈Ω×(0,∞),wt=d3Δw-ξ2∇·(w∇z)+χ2∇·(w∇v)+g2(u,w),(x,t)∈Ω×(0,∞),τzt=d4Δz+u-z,(x,t)∈Ω×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=d_{1}\Delta u-\xi _{1}\nabla \cdot (u\nabla v)+\chi _{1}\nabla \cdot (u\nabla z)+g_{1}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau v_{t}=d_{2}\Delta v+w-v,&(x,t)\in \Omega \times (0,\infty ),\\&w_t=d_{3}\Delta w-\xi _{2}\nabla \cdot (w\nabla z)+\chi _{2}\nabla \cdot (w\nabla v)+g_{2}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau z_{t}=d_{4}\Delta z+u-z,&(x,t)\in \Omega \times (0,\infty ) \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{n}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, where τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}, the parameters di(i=1,2,3,4),ξj,χj(j=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{i}(i=1,2,3,4),\xi _{j},\chi _{j}(j=1,2)$$\end{document} are positive and the kinetic terms g1(u,w),g2(u,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{1}(u,w),g_{2}(u,w)$$\end{document} satisfy g1(u,w)=u(a0-a1u-a2w-a3∫Ωudx-a4∫Ωwdx),g2(u,w)=w(b0-b1u-b2w-b3∫Ωudx-b4∫Ωwdx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&g_{1}(u,w)=u\bigg (a_{0}-a_{1}u-a_{2}w-a_{3}\int _{\Omega }u{\text {d}}x-a_{4}\int _{\Omega }w{\text {d}}x\bigg ),\\&g_{2}(u,w)=w\bigg (b_{0}-b_{1}u-b_{2}w-b_{3}\int _{\Omega }u{\text {d}}x-b_{4}\int _{\Omega }w{\text {d}}x\bigg )\\ \end{aligned} \right. \end{aligned}$$\end{document}with a0,a1,b0,b2>0,a2,a3,a4,b1,b3,b4∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0},a_{1},b_{0},b_{2}>0,a_{2},a_{3},a_{4},b_{1},b_{3},b_{4}\in {\mathbb {R}}$$\end{document}. It is shown that under some suitable parameter conditions, the above system possesses a unique global and uniformly bounded solution in any spatial dimension. Moreover, we investigate the asymptotic stability of solutions under the locally intraspecific competition and globally interspecific cooperation. Finally, we present some numerical simulations, which not only support our analytically theoretical results, but also find some new and interesting phenomena.
引用
收藏
相关论文
共 50 条
  • [41] Boundedness and stabilization in a two-species chemotaxis system with logistic source
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [42] Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant
    Zhang, Jing
    Hu, Xuegang
    Wang, Liangchen
    Qu, Li
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (31) : 1 - 12
  • [43] Boundedness and stabilization in a two-species chemotaxis system with signal absorption
    Zhang, Qingshan
    Tao, Weirun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2672 - 2681
  • [44] Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction
    Lin, Ke
    Mu, Chunlai
    Zhou, Deqin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (06): : 1105 - 1134
  • [45] Basins of Attraction for Two-Species Competitive Model with Quadratic Terms and the Singular Allee Effect
    Brett, A.
    Kulenovic, M. R. S.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [46] GLOBAL DYNAMICS IN A TWO-SPECIES CHEMOTAXIS-COMPETITION SYSTEM WITH TWO SIGNALS
    Tu, Xinyu
    Mu, Chunlai
    Zheng, Pan
    Lin, Ke
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (07) : 3617 - 3636
  • [47] Global attractors in a two-species chemotaxis system with two chemicals and logistic sources
    Tian, Miaoqing
    He, Xiao
    Zheng, Sining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
  • [48] BOUNDEDNESS IN A TWO-SPECIES QUASI-LINEAR CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Zheng, Jiashan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (02) : 463 - 480
  • [49] Boundedness in a three-dimensional two-species chemotaxis system with two chemicals
    Xu Pan
    Liangchen Wang
    Jing Zhang
    Jie Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [50] Boundedness in a quasilinear two-species chemotaxis system with two chemicals in higher dimensions
    Zhong, Hua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)