On a Two-Species Attraction–Repulsion Chemotaxis System with Nonlocal Terms

被引:0
|
作者
Pan Zheng
Runlin Hu
Wenhai Shan
机构
[1] Chongqing University of Posts and Telecommunications,College of Science
[2] The Chinese University of Hong Kong,Department of Mathematics
[3] Yunnan University,School of Mathematics and Statistics
来源
关键词
Two-species; Attraction–repulsion; Boundedness; Stability; Nonlocal kinetics; 35B35; 35B40; 35K15; 35K55; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a two-species attraction–repulsion chemotaxis system ut=d1Δu-ξ1∇·(u∇v)+χ1∇·(u∇z)+g1(u,w),(x,t)∈Ω×(0,∞),τvt=d2Δv+w-v,(x,t)∈Ω×(0,∞),wt=d3Δw-ξ2∇·(w∇z)+χ2∇·(w∇v)+g2(u,w),(x,t)∈Ω×(0,∞),τzt=d4Δz+u-z,(x,t)∈Ω×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=d_{1}\Delta u-\xi _{1}\nabla \cdot (u\nabla v)+\chi _{1}\nabla \cdot (u\nabla z)+g_{1}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau v_{t}=d_{2}\Delta v+w-v,&(x,t)\in \Omega \times (0,\infty ),\\&w_t=d_{3}\Delta w-\xi _{2}\nabla \cdot (w\nabla z)+\chi _{2}\nabla \cdot (w\nabla v)+g_{2}(u,w),&(x,t)\in \Omega \times (0,\infty ), \\&\tau z_{t}=d_{4}\Delta z+u-z,&(x,t)\in \Omega \times (0,\infty ) \end{aligned} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{n}$$\end{document} for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, where τ∈{0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \{0,1\}$$\end{document}, the parameters di(i=1,2,3,4),ξj,χj(j=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{i}(i=1,2,3,4),\xi _{j},\chi _{j}(j=1,2)$$\end{document} are positive and the kinetic terms g1(u,w),g2(u,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{1}(u,w),g_{2}(u,w)$$\end{document} satisfy g1(u,w)=u(a0-a1u-a2w-a3∫Ωudx-a4∫Ωwdx),g2(u,w)=w(b0-b1u-b2w-b3∫Ωudx-b4∫Ωwdx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}{}&g_{1}(u,w)=u\bigg (a_{0}-a_{1}u-a_{2}w-a_{3}\int _{\Omega }u{\text {d}}x-a_{4}\int _{\Omega }w{\text {d}}x\bigg ),\\&g_{2}(u,w)=w\bigg (b_{0}-b_{1}u-b_{2}w-b_{3}\int _{\Omega }u{\text {d}}x-b_{4}\int _{\Omega }w{\text {d}}x\bigg )\\ \end{aligned} \right. \end{aligned}$$\end{document}with a0,a1,b0,b2>0,a2,a3,a4,b1,b3,b4∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0},a_{1},b_{0},b_{2}>0,a_{2},a_{3},a_{4},b_{1},b_{3},b_{4}\in {\mathbb {R}}$$\end{document}. It is shown that under some suitable parameter conditions, the above system possesses a unique global and uniformly bounded solution in any spatial dimension. Moreover, we investigate the asymptotic stability of solutions under the locally intraspecific competition and globally interspecific cooperation. Finally, we present some numerical simulations, which not only support our analytically theoretical results, but also find some new and interesting phenomena.
引用
收藏
相关论文
共 50 条
  • [1] On a Two-Species Attraction-Repulsion Chemotaxis System with Nonlocal Terms
    Zheng, Pan
    Hu, Runlin
    Shan, Wenhai
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (04)
  • [2] GLOBAL BOUNDEDNESS IN A QUASILINEAR TWO-SPECIES ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Tian, Miaoqing
    Wang, Shujuan
    Xiao, Xia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 197 - 208
  • [3] Global Stability in a Two-species Attraction-Repulsion System with Competitive and Nonlocal Kinetics
    Hu, Runlin
    Zheng, Pan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (03) : 2555 - 2592
  • [4] Global boundedness in a two-species attraction-repulsion chemotaxis system with two chemicals and nonlinear productions
    Tian, Miaoqing
    Han, Lili
    He, Xiao
    Zheng, Sining
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 76
  • [5] Global boundedness and asymptotic behavior in an attraction–repulsion chemotaxis system with nonlocal terms
    Guoqiang Ren
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [6] Blow-up vs boundedness in a two-species attraction-repulsion chemotaxis system with two chemicals
    Liu, Aichao
    Dai, Binxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [7] Global boundedness and asymptotic behavior in an attraction-repulsion chemotaxis system with nonlocal terms
    Ren, Guoqiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):
  • [8] BOUNDEDNESS IN A TWO SPECIES ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH TWO CHEMICALS
    Liu, Aichao
    Dai, Binxiang
    Chen, Yuming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 6037 - 6062
  • [9] FINITE ELEMENT ANALYSIS OF THE NONLOCAL DIFFUSION EFFECT IN A TWO-SPECIES CHEMOTAXIS SYSTEM
    Annamalai, Baskar
    Venugopal, Parthiban
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [10] Global solutions of a two-dimensional chemotaxis system with attraction and repulsion rotational flux terms
    Dong, Ying
    Li, Xie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 2248 - 2264