Temperature sensitivity analysis of dual material stack gate oxide source dielectric pocket TFET

被引:0
|
作者
Kaushal Nigam
Satyendra Kumar
机构
[1] Jaypee Institute of Information Technology,Department of Electronics and Communication Engineering
来源
关键词
Dielectric pocket; Temperature sensitivity; Stack gate-oxide; Linearity;
D O I
暂无
中图分类号
学科分类号
摘要
The variation of the temperature-dependent performance of an electronic device is one of the major concerns in predicting the actual electrical characteristics of the device as the bandgap of semiconducting material varies with temperature. Therefore, in this article, we investigate impact of temperature variations ranging from 300 to 450K on the DC, analog/ radio frequency, and linearity performance of dual material stack gate oxide-source dielectric pocket-tunnel-field-effect transistor (DMSGO-SDP-TFET). In this regard, a technology computer-aided design simulator is used to analyze DC, and analog/radio-frequency performance parameters, such as carrier concentration, energy band variation, band-to-band tunneling rate, IDS-VGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\mathrm{DS}-V_\mathrm{GS}$$\end{document} characteristics, transconductance (gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m}$$\end{document}), cut off frequency (fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{T}$$\end{document}), gain-bandwidth product, maximum oscillating frequency (fmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{\max }$$\end{document}), transconductance frequency product, and transit time (τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}) considering the impact of temperature variations. Furthermore, linearity parameters, such as third-order transconductance (gm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m3}$$\end{document}), third-order voltage intercept point (VIP3), third-order input-interception point (IIP3), and intermodulation distortion (IMD3) are also analyzed with temperature variations as these performance parameters are significant for linear and analog/radio-frequency applications. Moreover, the performance of the proposed DMSGO-SDP-TFET is compared with the conventional dual-material stack gate oxide-tunnel-field-effect transistor (DMSGO-TFET). From the comparative analysis, in terms of percentage per kelvin, the DMSGO-SDP-TFET demonstrates lesser sensitivity towards temperature variation. Hence, the proposed DMSGO-SDP-TFET is a suitable candidate for low-power switching, and biosensing applications at elevated temperatures as compared to conventional DMSGO-TFETs.
引用
收藏
页码:802 / 813
页数:11
相关论文
共 50 条
  • [1] Temperature sensitivity analysis of dual material stack gate oxide source dielectric pocket TFET
    Nigam, Kaushal
    Kumar, Satyendra
    Dharmender
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2022, 21 (04) : 802 - 813
  • [2] Analytical Modeling for a New Structure of Dielectric Pocket-Based Dual Material Double Gate TFET with Gate Oxide Stack
    Melisa Ebrahimnia
    Seyed Ali Sedigh Ziabari
    Azadeh Kiani-sarkaleh
    [J]. Silicon, 2023, 15 : 3215 - 3224
  • [3] Analytical Modeling for a New Structure of Dielectric Pocket-Based Dual Material Double Gate TFET with Gate Oxide Stack
    Ebrahimnia, Melisa
    Ziabari, Seyed Ali Sedigh
    Kiani-sarkaleh, Azadeh
    [J]. SILICON, 2023, 15 (07) : 3215 - 3224
  • [4] Influence analysis of dielectric pocket on ambipolar behavior and high-frequency performance of dual material gate oxide stack -double gate Nano-Scale TFET
    Ebrahimnia, Melisa
    Ziabari, Seyed Ali Sedigh
    Kiani-sarkaleh, Azadeh
    [J]. JOURNAL OF NANOANALYSIS, 2022, 9 (02): : 90 - 98
  • [5] Theoretical Investigation of Dual-Material Stacked Gate Oxide-Source Dielectric Pocket TFET Based on Interface Trap Charges and Temperature Variations
    Nigam, Kaushal Kumar
    Dharmender
    Tikkiwal, Vinay Anand
    Bind, Mukesh Kumar
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (15)
  • [6] Low-K Dielectric Pocket and Workfunction Engineering for DC and Analog/RF Performance Improvement in Dual Material Stack Gate Oxide Double Gate TFET
    Dharmender
    Nigam, Kaushal
    [J]. SILICON, 2021, 13 (07) : 2347 - 2356
  • [7] Low-K Dielectric Pocket and Workfunction Engineering for DC and Analog/RF Performance Improvement in Dual Material Stack Gate Oxide Double Gate TFET
    Kaushal Dharmender
    [J]. Silicon, 2021, 13 : 2347 - 2356
  • [8] Investigation of Dielectric Pocket and Work function Engineering in Triple Material Hetero Gate Stack Oxide Double Gate TFET for Low Power Applications
    Karmakar, Priyanka
    Sahu, P. K.
    [J]. 2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 40 - 45
  • [9] Impact of Dielectric Material and Temperature Variations on the Performance of TFET with Dielectric Pocket
    Upasana, Mridula Gupta
    Narang, Rakhi
    Saxena, Manoj
    [J]. 2016 IEEE ANNUAL INDIA CONFERENCE (INDICON), 2016,
  • [10] Current Enhanced Double-Gate TFET with Source Pocket and Asymmetric Gate Oxide
    Yu, Zhonghua
    Dong, Yunpeng
    Lin, Xinnan
    Zhang, Lining
    [J]. 7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,