The Penrose Inequality for Asymptotically Locally Hyperbolic Spaces with Nonpositive Mass

被引:0
|
作者
Dan A. Lee
André Neves
机构
[1] Queens College,
[2] Imperial College,undefined
来源
关键词
Minimal Surface; Hyperbolic Space; Boundary Component; Hyperbolic Manifold; Exterior Region;
D O I
暂无
中图分类号
学科分类号
摘要
In the asymptotically locally hyperbolic setting it is possible to have metrics with scalar curvature ≥ −6 and negative mass when the genus of the conformal boundary at infinity is positive. Using inverse mean curvature flow, we prove a Penrose inequality for these negative mass metrics. The motivation comes from a previous result of P. Chruściel and W. Simon, which states that the Penrose inequality we prove implies a static uniqueness theorem for negative mass Kottler metrics.
引用
收藏
页码:327 / 352
页数:25
相关论文
共 50 条
  • [21] An Alexandrov-Fenchel-Type Inequality in Hyperbolic Space with an Application to a Penrose Inequality
    de Lima, Levi Lopes
    Girao, Frederico
    ANNALES HENRI POINCARE, 2016, 17 (04): : 979 - 1002
  • [22] An Alexandrov–Fenchel-Type Inequality in Hyperbolic Space with an Application to a Penrose Inequality
    Levi Lopes de Lima
    Frederico Girão
    Annales Henri Poincaré, 2016, 17 : 979 - 1002
  • [23] RESONANCES FOR SYMMETRIC TENSORS ON ASYMPTOTICALLY HYPERBOLIC SPACES
    Hadfield, Charles
    ANALYSIS & PDE, 2017, 10 (08): : 1877 - 1922
  • [24] A mass for asymptotically complex hyperbolic manifolds
    Maerten, Daniel
    Minerbe, Vincent
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (04) : 875 - 902
  • [25] Distribution of resonances for analytic asymptotically hyperbolic spaces
    Wang, Yiran
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (02) : 651 - 675
  • [26] On the total mass of asymptotically hyperbolic manifolds
    Barzegar, Hamed
    Chrusciel, Piotr T.
    Luc Nguyen
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2019, 15 (02) : 683 - 706
  • [27] The GBC mass for asymptotically hyperbolic manifolds
    Yuxin Ge
    Guofang Wang
    Jie Wu
    Mathematische Zeitschrift, 2015, 281 : 257 - 297
  • [28] Mass formulae for asymptotically hyperbolic manifolds
    Herzlich, M
    ADS/CFT CORRESPONDENCE: EINSTEIN METRICS AND THEIR CONFORMAL BOUNDARIES, 2005, 8 : 103 - 121
  • [29] The GBC mass for asymptotically hyperbolic manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 147 - 151
  • [30] Constant curvature foliations in asymptotically hyperbolic spaces
    Mazzeo, Rafe
    Pacard, Frank
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) : 303 - 333