Hopf Bifurcation Analysis and Existence of Heteroclinic Orbit and Homoclinic Orbit in an Extended Lorenz System

被引:0
|
作者
Aritra Das
Soumya Das
Pritha Das
机构
[1] Indian Institute of Technology Kanpur,Department of Physics
[2] Indian Institute of Engineering Science and Technology,Department of Mathematics
关键词
Lorenz-like model; Chen system; Hopf bifurcation; Centre manifold theorem; Fishing principle; Homoclinic and heteroclinic orbits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have considered a Lorenz-like model with slight changes in the nonlinear terms. Here we have studied the system dynamics for different range of values of parameters σ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma , r$$\end{document}. The Hopf bifurcation analysis of the system has been done using center manifold theorem for σ=-1,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = -1, r > 1$$\end{document}. Phase portraits of solutions of the system are plotted for various system parameters to substantiate the change in dynamics. The bifurcation diagram and the Lyapunov exponent evaluation plots also help to explain the behaviour of the system. Using Fishing principle, we have shown the existence of homoclinic orbit and consequently, observed the existence of homoclinic as well as heteroclinic orbits in the numerical simulation for σ>0,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma> 0, r > 1$$\end{document}.
引用
收藏
页码:33 / 49
页数:16
相关论文
共 50 条
  • [41] Bifurcation from a homoclinic orbit in partial functional differential equations
    Ruan, SG
    Wei, JJ
    Wu, JH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (05) : 1293 - 1322
  • [43] Hopf bifurcations in an extended Lorenz system
    Zhiming Zhou
    Gheorghe Tigan
    Zhiheng Yu
    Advances in Difference Equations, 2017
  • [44] Hopf bifurcations in an extended Lorenz system
    Zhou, Zhiming
    Tigan, Gheorghe
    Yu, Zhiheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [45] HOMOCLINIC AND HETEROCLINIC ORBITS AND BIFURCATIONS OF A NEW LORENZ-TYPE SYSTEM
    Li, Xianyi
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2695 - 2712
  • [46] Zero–Hopf bifurcation in a hyperchaotic Lorenz system
    Lorena Cid-Montiel
    Jaume Llibre
    Cristina Stoica
    Nonlinear Dynamics, 2014, 75 : 561 - 566
  • [47] On the construction of the homoclinic butterfly bifurcation surface for the Lorenz system
    Kaloshin, DA
    DIFFERENTIAL EQUATIONS, 2003, 39 (11) : 1648 - 1650
  • [48] On the Construction of the Homoclinic Butterfly Bifurcation Surface for the Lorenz System
    D. A. Kaloshin
    Differential Equations, 2003, 39 : 1648 - 1650
  • [49] Hopf Bifurcation Analysis and Control of a New Lorenz-like System
    Zhang Zhonghua
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1597 - 1601
  • [50] PERIODIC ORBIT ANALYSIS OF THE LORENZ ATTRACTOR
    ECKHARDT, B
    OTT, G
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (02): : 259 - 266