Hopf Bifurcation Analysis and Existence of Heteroclinic Orbit and Homoclinic Orbit in an Extended Lorenz System

被引:0
|
作者
Aritra Das
Soumya Das
Pritha Das
机构
[1] Indian Institute of Technology Kanpur,Department of Physics
[2] Indian Institute of Engineering Science and Technology,Department of Mathematics
关键词
Lorenz-like model; Chen system; Hopf bifurcation; Centre manifold theorem; Fishing principle; Homoclinic and heteroclinic orbits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have considered a Lorenz-like model with slight changes in the nonlinear terms. Here we have studied the system dynamics for different range of values of parameters σ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma , r$$\end{document}. The Hopf bifurcation analysis of the system has been done using center manifold theorem for σ=-1,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = -1, r > 1$$\end{document}. Phase portraits of solutions of the system are plotted for various system parameters to substantiate the change in dynamics. The bifurcation diagram and the Lyapunov exponent evaluation plots also help to explain the behaviour of the system. Using Fishing principle, we have shown the existence of homoclinic orbit and consequently, observed the existence of homoclinic as well as heteroclinic orbits in the numerical simulation for σ>0,r>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma> 0, r > 1$$\end{document}.
引用
收藏
页码:33 / 49
页数:16
相关论文
共 50 条
  • [1] Hopf Bifurcation Analysis and Existence of Heteroclinic Orbit and Homoclinic Orbit in an Extended Lorenz System
    Das, Aritra
    Das, Soumya
    Das, Pritha
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (01) : 33 - 49
  • [2] Heteroclinic Trajectory and Hopf Bifurcation in an Extended Lorenz System
    Li, Xianyi
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):
  • [3] EXISTENCE OF A HOMOCLINIC ORBIT OF THE LORENZ SYSTEM BY PRECISE SHOOTING
    HASSARD, B
    ZHANG, JH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (01) : 179 - 196
  • [4] Heteroclinic Orbit, Forced Lorenz System, and Chaos
    Ghosh, Dibakar
    Ray, Anirban
    Chowdhury, A. Roy
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (01): : 1 - 7
  • [5] Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system
    Xianyi Li
    Peng Wang
    Nonlinear Dynamics, 2013, 73 : 621 - 632
  • [6] Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system
    Li, Xianyi
    Wang, Peng
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 621 - 632
  • [7] Bifurcation analysis of the multiple flips homoclinic orbit
    Tiansi Zhang
    Deming Zhu
    Chinese Annals of Mathematics, Series B, 2015, 36 : 91 - 104
  • [8] Bifurcation Analysis of the Multiple Flips Homoclinic Orbit
    Tiansi ZHANG
    Deming ZHU
    Chinese Annals of Mathematics(Series B), 2015, 36 (01) : 91 - 104
  • [9] Homoclinic (Heteroclinic) Orbit of Complex Dynamical System and Spiral Structure
    FU Zun-Tao
    LIU Shi-Da
    LIU Shi-Kuo
    LIANG Fu-Ming
    XIN Guo-Jun School of Physics
    CommunicationsinTheoreticalPhysics, 2005, 43 (04) : 601 - 603
  • [10] Bifurcation Analysis of the Multiple Flips Homoclinic Orbit
    Zhang, Tiansi
    Zhu, Deming
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (01) : 91 - 104