Ground Motion Prediction Model Using Artificial Neural Network

被引:0
|
作者
J. Dhanya
S. T. G. Raghukanth
机构
[1] Indian Institute of Technology,
来源
关键词
GMPE; NGA-West2; ANN; genetic algorithm; seismic hazard;
D O I
暂无
中图分类号
学科分类号
摘要
This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg–Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (Mw), closest distance to rupture plane (Rrup), shear wave velocity in the region (Vs30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.
引用
下载
收藏
页码:1035 / 1064
页数:29
相关论文
共 50 条
  • [11] Milling wear prediction using an artificial neural network model
    Yau, Her-Terng
    Kuo, Ping-Huan
    Hong, Song-Wei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [12] A Stock Market Prediction Model using Artificial Neural Network
    Abhishek, Kumar
    Khairwa, Anshul
    Pratap, Tej
    Prakash, Surya
    2012 THIRD INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION & NETWORKING TECHNOLOGIES (ICCCNT), 2012,
  • [13] Air pollution prediction by using an artificial neural network model
    Heidar Maleki
    Armin Sorooshian
    Gholamreza Goudarzi
    Zeynab Baboli
    Yaser Tahmasebi Birgani
    Mojtaba Rahmati
    Clean Technologies and Environmental Policy, 2019, 21 : 1341 - 1352
  • [14] Air pollution prediction by using an artificial neural network model
    Maleki, Heidar
    Sorooshian, Armin
    Goudarzi, Gholamreza
    Baboli, Zeynab
    Birgani, Yaser Tahmasebi
    Rahmati, Mojtaba
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2019, 21 (06) : 1341 - 1352
  • [15] Prediction of blast-induced ground vibration using artificial neural network
    Khandelwal, Manoj
    Singh, T. N.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2009, 46 (07) : 1214 - 1222
  • [16] Prediction of ground level ozone concentration using artificial neural network modeling
    Scarlatos, PD
    Crumiere, M
    DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES VIII, 2000, 4 : 27 - 36
  • [17] HEAVE MOTION PREDICTION OF RECTANGULAR FLOATING BARGE USING ARTIFICIAL NEURAL NETWORK
    Ibn Awal, Zobair
    Mehtaj, Nafisa
    Pranto, Rakin Ishmam
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7A, 2021,
  • [18] REAL-TIME SHIP MOTION PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Taskar, Bhushan
    Chua, Kie Hian
    Akamatsu, Tatsuya
    Kakuta, Ryo
    Yeow, Song Wen
    Niki, Ryosuke
    Nishizawa, Keita
    Magee, Allan
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 5B, 2022,
  • [19] Artificial neural network model for PMV prediction
    Zhang, J
    Zhang, WJ
    Zong, LH
    ISHVAC 99: 3RD INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, VOLS 1 AND 2, 1999, : 214 - 219
  • [20] An artificial neural network model for prediction of logD
    Waldman, Marvin
    Fraczkiewicz, Robert
    Woltosz, Walter S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237