Mathematical modeling of interactions between colon cancer and immune system with a deep learning algorithm

被引:8
|
作者
Raeisi, Elham [1 ,6 ]
Yavuz, Mehmet [2 ,3 ]
Khosravifarsani, Mohammadreza [4 ]
Fadaei, Yasin [5 ]
机构
[1] Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Clin Biochem Res Ctr, Shahrekord, Iran
[2] Necmettin Erbakan Univ, Fac Sci, Dept Math Comp Sci, TR-42090 Konya, Turkiye
[3] Univ Exeter, Fac Environm Sci & Econ, Ctr Environm Math, Cornwall TR10 9FE, England
[4] Shahrekord Univ Med Sci, Canc Res Ctr, Shahrekord, Iran
[5] Shahrekord Univ Med Sci, Modeling Hlth Res Ctr, Shahrekord, Iran
[6] Shahrekord Univ Med Sci, Sch Allied Med Sci, Dept Med Phys & Radiol Technol, Shahrekord, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 04期
关键词
DENDRITIC CELLS; T-LYMPHOCYTES; TRANSMISSION; NETWORKS; GROWTH;
D O I
10.1140/epjp/s13360-024-05111-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Colon cancer is a complex disease with genetically unstable cell lines. In order to better understand the complexity of colon cancer cells and their metastatic mechanisms, we develop a mathematical model in this study. The model is based on a system of fractional-order differential equations and Fractional-Cancer-Informed Neural Networks (FCINN). The model captures a dynamic network of interactions between dendritic cells (DCs), cytotoxic T-cells (CD 8 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8<^>+$$\end{document} ), helper T-cells (CD 4 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<^>+$$\end{document} ), and colon cancer cells through fractional differential equations. By varying the fractional order between 0 and 1, we can classify patients into different groups based on their immune patterns. The goal of this paper is to identify different immune patterns and cancer cell behaviors, as well as the parameters that play an important role in metastasis, control, or elimination of cancer cells in the model. However, several parameters in the model are difficult to estimate in a patient-specific manner. To address this challenge, we use FCINN as an effective deep-learning tool for parameter estimation and numerical simulation of the model. Our findings suggest that the most effective factors in controlling the progression and preventing metastasis of colon cancer are the initial number of cancer cells, the inhibiting rates of tumor cells by DCs, the source of DCs, and the activation of helper T-cells by DCs. These findings suggest that DCs can be used as an immunotherapy tool for the control and treatment of colon cancer.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Learning With Sampling in Colon Cancer Histology
    Shapcott, Mary
    Hewitt, Katherine J.
    Rajpoot, Nasir
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (MAR)
  • [22] A comprehensive review of deep learning in colon cancer
    Pacal, Ishak
    Karaboga, Dervis
    Basturk, Alper
    Akay, Bahriye
    Nalbantoglu, Ufuk
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
  • [23] Elucidating interactions between zebrafish innate immune system and cancer progression
    Lou, Meng
    Powell, Davalyn
    Huttenlocher, Anna
    FASEB JOURNAL, 2018, 32 (01):
  • [24] A contribution to the mathematical modeling of immune-cancer competition
    Dabnoun, Najat M. Omar
    Mongiovi, Maria Stella
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (02): : 76 - 90
  • [25] Mathematical modeling of the interactions between aquacultures and the sea environment
    Stamou, Anastasios I.
    Karamanoli, Mariana
    Vassiliadou, Nicoleta
    Douka, Eisodia
    Bergamasco, Alessandro
    Cenobese, Lucrezia
    DESALINATION, 2009, 248 (1-3) : 826 - 835
  • [26] INTERACTIONS BETWEEN HPV AND THE IMMUNE SYSTEM
    van der Burg, S. H.
    SEXUAL HEALTH, 2009, 6 (04) : 350 - 350
  • [27] Interactions Between the Microbiota and the Immune System
    Hooper, Lora V.
    Littman, Dan R.
    Macpherson, Andrew J.
    SCIENCE, 2012, 336 (6086) : 1268 - 1273
  • [28] Interactions between immune system and psyche
    Mayr, B
    Mayr, A
    TIERARZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE, 1998, 26 (04): : 230 - 235
  • [29] Interactions between the immune system and bone
    D'Amelio, Patrizia
    Fornelli, Giorgia
    Roato, Ilaria
    Isaia, Giovanni Carlo
    WORLD JOURNAL OF ORTHOPEDICS, 2011, 2 (03): : 25 - 30