Resolution with Counting: Dag-Like Lower Bounds and Different Moduli

被引:0
|
作者
Fedor Part
Iddo Tzameret
机构
[1] JetBrains Research,Department of Computer Science Royal Holloway
[2] University of London,undefined
来源
computational complexity | 2021年 / 30卷
关键词
03F20; 68Q17; 13P15; Proof complexity; Lower bounds; Resolution; Resolution over linear equations; Polynomial calculus; Linear decision trees; Propositional pigeonhole principle; Tseitin formulas;
D O I
暂无
中图分类号
学科分类号
摘要
Resolution over linear equations is a natural extension of the popular resolution refutation system, augmented with the ability to carry out basic counting. Denoted Res(linR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Res}({\rm lin}_R)$$\end{document}, this refutation system operates with disjunctions of linear equations with Boolean variables over a ring R, to refute unsatisfiable sets of such disjunctions. Beginning in the work of Raz & Tzameret (2008), through the work of Itsykson & Sokolov (2020) which focused on tree-like lower bounds, this refutation system was shown to be fairly strong. Subsequent work (cf. Garlik & Kołodziejczyk 2018; Itsykson & Sokolov 2020; Krajícek 2017; Krajícek & Oliveira 2018) made it evident that establishing lower bounds against general Res(linR)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Res}({\rm lin}_R)$$\end{document} refutations is a challenging and interesting task since the system captures a ``minimal'' extension of resolution with counting gates for which no super-polynomial lower bounds are known to date.
引用
收藏
相关论文
共 50 条