Besov Estimates for Weak Solutions of the Parabolic p-Laplacian Equations

被引:0
|
作者
Rumeng Ma
Fengping Yao
机构
[1] Shanghai University,Department of Mathematics
关键词
Besov spaces; Regularity; -Laplacian; Parabolic; Weak solutions; 35B65; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain the local regularity estimates in Besov spaces of weak solutions for the following parabolic p-Laplacian equations: ut-divaDu,x,t=divF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{t}-\text {div} ~\! a \left( Du, x,t \right) =\text {div}~ {\mathbf {F}} \end{aligned}$$\end{document}under some proper assumptions on the functions a and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {F}}$$\end{document}. Moreover, we would like to point out that our results improve the known results for such equations.
引用
收藏
页码:3839 / 3859
页数:20
相关论文
共 50 条
  • [21] Existence of weak solutions to degenerate p-Laplacian equations and integral formulas
    Chua, Seng-Kee
    Wheeden, Richard L.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8186 - 8228
  • [22] EXISTENCE OF WEAK SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING THE p-LAPLACIAN
    Severo, Uberlandio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [23] A note on global regularity for the weak solutions of fractional p-Laplacian equations
    Iannizzotto, Antonio
    Mosconi, Sunra J. N.
    Squassina, Marco
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (01) : 15 - 24
  • [24] Singular solutions of parabolic p-Laplacian with absorption
    Chen, Xinfu
    Qi, Yuanwei
    Wang, Mingxin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5653 - 5668
  • [25] Some fundamental a priori estimates for weak solutions of the evolution p-Laplacian equation
    Ziebell, J. S.
    Schutz, L.
    Guidolin, P. L.
    APPLICABLE ANALYSIS, 2020, 99 (16) : 2793 - 2806
  • [26] On the existence and regularity of solutions to singular parabolic p-Laplacian equations with absorption term
    Mounim El Ouardy
    Youssef El Hadfi
    Abdelaaziz Sbai
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4119 - 4147
  • [27] A note on gradient estimates for p-Laplacian equations
    Guarnotta, Umberto
    Marano, Salvatore A.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (02): : 391 - 399
  • [28] On the existence and regularity of solutions to singular parabolic p-Laplacian equations with absorption term
    El Ouardy, Mounim
    El Hadfi, Youssef
    Sbai, Abdelaaziz
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 4119 - 4147
  • [29] Grow-up of weak solutions in a p-Laplacian pseudo-parabolic problem
    Li, Ke
    Liu, Bingchen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [30] On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian Via Young Measures
    Talibi, Ihya
    Balaadich, Farah
    El Boukari, Brahim
    El Ghordaf, Jalila
    ANNALES MATHEMATICAE SILESIANAE, 2024,