On homogeneous isotropic Berwald metrics

被引:0
|
作者
Akbar Tayebi
Behzad Najafi
机构
[1] University of Qom,Department of Mathematics, Faculty of Science
[2] Amirkabir University (Tehran Polytechnic),Department of Mathematics and Computer Sciences
来源
关键词
Isotropic Berwald metric; Randers metric; Locally dually flat metric; 53C30; 22F30;
D O I
暂无
中图分类号
学科分类号
摘要
We study homogeneous isotropic Berwald metrics on a manifold M of dimension n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document}. We prove that such Finsler metrics are either Randers metrics of Berwald type or Berwald metrics. This result generalises the well-known Deng–Liu theorem established for (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-metrics. It is also shown that every homogeneous isotropic Berwald metric with scalar flag curvature is either Riemannian or locally Minkowskian. As a consequence, a homogeneous isotropic Berwald metric is locally dually flat if and only if it is either a Berwald metric, or a locally Minkowskian metric of Randers type, or a Riemannian metric with negative constant sectional curvature.
引用
收藏
页码:404 / 415
页数:11
相关论文
共 50 条
  • [31] Characterization of Weakly Berwald Fourth-Root Metrics
    Khoshdani, T. R.
    Abazari, N.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (07) : 1115 - 1137
  • [32] On Berwald m-th root Finsler metrics
    Zu, Doukou
    Zhang, Shujie
    Li, Benling
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 169 - 177
  • [33] ON CONFORMALLY BERWALD M-TH ROOT (α, β)-METRICS
    Tayebi, Akbar
    Amini, Marzeiya
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (04): : 963 - 981
  • [34] Characterization of Weakly Berwald Fourth-Root Metrics
    T. R. Khoshdani
    N. Abazari
    Ukrainian Mathematical Journal, 2019, 71 : 1115 - 1137
  • [35] Characterizations of complex Finsler connections and weakly complex Berwald metrics
    Sun, Liling
    Zhong, Chunping
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (05) : 648 - 671
  • [36] A new Tzitzeica hypersurface and cubic Finslerian metrics of Berwald type
    Constantinescu, O.
    Crasmareanu, M.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (02): : 27 - 34
  • [37] Averaged Riemannian metrics and connections with application to locally conformal Berwald manifolds
    Aikou, Tadashi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (1-2): : 179 - 198
  • [38] On homogeneous and isotropic universe
    Katanaev, M. O.
    MODERN PHYSICS LETTERS A, 2015, 30 (34)
  • [39] HOMOGENEOUS ISOTROPIC TURBULENCE
    SZABLEWSKI, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (10): : T509 - T511
  • [40] Left invariant Randers metrics of Berwald type on tangent Lie groups
    Asgari, Farhad
    Moghaddam, Hamid Reza Salimi
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (01)