On homogeneous isotropic Berwald metrics

被引:0
|
作者
Akbar Tayebi
Behzad Najafi
机构
[1] University of Qom,Department of Mathematics, Faculty of Science
[2] Amirkabir University (Tehran Polytechnic),Department of Mathematics and Computer Sciences
来源
关键词
Isotropic Berwald metric; Randers metric; Locally dually flat metric; 53C30; 22F30;
D O I
暂无
中图分类号
学科分类号
摘要
We study homogeneous isotropic Berwald metrics on a manifold M of dimension n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 3$$\end{document}. We prove that such Finsler metrics are either Randers metrics of Berwald type or Berwald metrics. This result generalises the well-known Deng–Liu theorem established for (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-metrics. It is also shown that every homogeneous isotropic Berwald metric with scalar flag curvature is either Riemannian or locally Minkowskian. As a consequence, a homogeneous isotropic Berwald metric is locally dually flat if and only if it is either a Berwald metric, or a locally Minkowskian metric of Randers type, or a Riemannian metric with negative constant sectional curvature.
引用
收藏
页码:404 / 415
页数:11
相关论文
共 50 条
  • [1] On homogeneous isotropic Berwald metrics
    Tayebi, Akbar
    Najafi, Behzad
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (01) : 404 - 415
  • [2] On isotropic Berwald metrics
    Tayebi, Akbar
    Najafi, Behzad
    ANNALES POLONICI MATHEMATICI, 2012, 103 (02) : 109 - 121
  • [3] On (α,β)-metrics with isotropic Berwald curvature
    Chen, Guangzu
    Liu, Lihong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 347 - 356
  • [4] S-curvature of isotropic Berwald metrics
    Tayebi, Akbar
    Rafie-Rad, Mehdi
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12): : 2198 - 2204
  • [5] ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE
    Zhu, Hongmei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 399 - 416
  • [6] S-curvature of isotropic Berwald metrics
    Akbar TAYEBI
    Mehdi RAFIE-RAD
    ScienceinChina(SeriesA:Mathematics), 2008, (12) : 2198 - 2204
  • [7] S-curvature of isotropic Berwald metrics
    Akbar Tayebi
    Mehdi Rafie-Rad
    Science in China Series A: Mathematics, 2008, 51 : 2198 - 2204
  • [8] ON SPHERICALLY SYMMETRIC FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE
    Guo, Enli
    Liu, Huaifu
    Mo, Xiaohuan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
  • [9] On a Class of Locally Dually Flat Isotropic Berwald Metrics
    Zhao, Wenjing
    Qu, Bochao
    Li, Li
    Shi, Linan
    INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2012, 308 : 348 - 355
  • [10] ISOTROPIC MEAN BERWALD FINSLER WARPED PRODUCT METRICS
    Gabrani, Mehran
    Rezaei, Bahman
    Sevim, Esra sengelen
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1641 - 1650