The Characteristic Sizes of the Sunspots and Pores in Solar Cycle 24

被引:0
|
作者
Andrey Tlatov
Alexandr Riehokainen
Kseniya Tlatova
机构
[1] Kislovodsk Mountain Astronomical Station of Pulkovo Observatory,Department of Physics and Astronomy
[2] Kalmyk State University,undefined
[3] University of Turku,undefined
来源
Solar Physics | 2019年 / 294卷
关键词
Sunspots; Active regions; Solar cycle;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comparative analysis of the size of spots in sunspot groups. For the analysis, we have used the characteristics of individual sunspots and pores according to the daily synoptic observations of the Kislovodsk Mountain astronomical station in Solar Cycle 24. We have constructed the distribution of area for the different types of the spots: pores, transitional sunspots, regular sunspots, and sunspots umbrae. We have found that the properties of the sunspots with largest area [Smax]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[S_{ \mathrm{max}}]$\end{document} differ from the other spots [Snomax]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[S_{\mathrm{nomax}}]$\end{document} in sunspot groups. In the distribution of area for Smax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{ \mathrm{max}}$\end{document} there are two local maxima S1mx≈10msh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{\mathrm{mx}}_{ 1}\approx 10~\mbox{msh}$\end{document} and S2mx≈130–180msh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{\mathrm{mx}}_{\mathrm{2}}\approx130\,\mbox{--}\,180~\mbox{msh}$\end{document}. The S1mx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{\mathrm{mx}}_{1}$\end{document} is connected with the transitional spots where the penumbra is not fully developed. For sunspots with Smax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}$\end{document} where a penumbra is formed or the ratio Ssp/Sum>3.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{sp}}/S_{\mathrm{um}}> 3.5$\end{document}, the maximum S2mx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{\mathrm{mx}} _{2}$\end{document} corresponds to the diameter of a round spot with d≈25Mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d \approx25~\mbox{Mm}$\end{document}. This size is close to the size of the supergranules. In the distribution of area, the two-vertex character is absent for sunspots in the groups with the exception of the spot having the largest area. For developed sunspots with Smax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}$\end{document}, in the distribution of area of the sunspot’s umbra we have a maximum Summx≈25msh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{\mathrm{mx}}_{\mathrm{um}} \approx25~\mbox{msh}$\end{document}. Thus, the two-vertex nature of the distribution of area is a consequence of the existence of pores and sunspots with developing penumbra.
引用
收藏
相关论文
共 50 条
  • [41] Pulsed nature of solar cycle 24
    Benevolenskaya, E. E.
    Ponyavin, Yu. D.
    [J]. GEOMAGNETISM AND AERONOMY, 2015, 55 (07) : 907 - 913
  • [42] NONLINEAR PREDICTION OF SOLAR CYCLE 24
    Kilcik, A.
    Anderson, C. N. K.
    Rozelot, J. P.
    Ye, H.
    Sugihara, G.
    Ozguc, A.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 693 (02): : 1173 - 1177
  • [43] Predicting solar cycle 24 with a solar dynamo model
    Choudhuri, Arnab Rai
    Chatterjee, Piyali
    Jiang, Jie
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (13)
  • [44] Pulsed nature of solar cycle 24
    E. E. Benevolenskaya
    Yu. D. Ponyavin
    [J]. Geomagnetism and Aeronomy, 2015, 55 : 907 - 913
  • [45] A prediction of the onset of solar cycle 24
    Du, Z. L.
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 457 (01) : 309 - 312
  • [46] Solar oscillations in cycle 24 ascending
    Jain, Kiran
    Tripathy, Sushanta
    Hill, Frank
    Larson, Timothy
    [J]. ECLIPSE ON THE CORAL SEA: CYCLE 24 ASCENDING (GONG 2012, LWS/SDO-5, AND SOHO 27), 2013, 440
  • [47] Prediction of solar cycle 24 and beyond
    K. M. Hiremath
    [J]. Astrophysics and Space Science, 2008, 314 : 45 - 49
  • [48] PREDICTION OF THE MAXIMUM OF SOLAR CYCLE 24
    Pishkalo, M. I.
    [J]. SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2010, 16 (03): : 32 - 38
  • [49] Solar cycle 24 from the standpoint of solar paleoastrophysics
    Ogurtsov, M. G.
    [J]. ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2016, 42 (03): : 204 - 206
  • [50] Solar cycle 24 from the standpoint of solar paleoastrophysics
    M. G. Ogurtsov
    [J]. Astronomy Letters, 2016, 42 : 204 - 206