Local stabilization of Polynomial Fuzzy Model with time delay: SOS approach

被引:0
|
作者
Hamdi Gassara
Fatma Siala
Ahmed El Hajjaji
Mohamed Chaabane
机构
[1] MIS Lab,University of Picardie Jules Verne
[2] STA Lab,National School of Engineers Sfax
关键词
Domain Of Attraction (DOA); local stability; polynomial fuzzy systems; polynomial Lyapunov Krasovskii functional; sum of squares (SOS); time delay;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a design method of control for Polynomial Fuzzy Models (PFM) with time delay is developed. By using a Polynomial Lyapunov Krasovskii Functional (PLKF) with double integral and by imposing bounds on the derivatives of each state, less conservative sufficient conditions are established to ensure the local stability of the closed loop system. Furthermore, a Domain Of Attraction (DOA) in which the initial states are ensured to converge asymptotically to the origin is estimated. The resulting conditions are formulated in terms of Sum-Of- Squares (SOS) which can be numerically (partially symbolically) solved via the recently developed SOSTOOLS. Some examples are provided to show the effectiveness and the merit of the design procedure.
引用
收藏
页码:385 / 393
页数:8
相关论文
共 50 条
  • [21] Stabilization of T-S fuzzy systems: An SOS approach
    Zhang, Daqing
    Zhang, Qingling
    Zhang, Yan
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (09): : 2273 - 2283
  • [22] Local stability conditions for T-S fuzzy time-delay systems using a homogeneous polynomial approach
    Li, Guiling
    Peng, Chen
    Fei, Minrui
    Tian, Yuchu
    [J]. FUZZY SETS AND SYSTEMS, 2020, 385 : 111 - 126
  • [23] Local Stabilization for Continuous-time Takagi-Sugeno Fuzzy Systems With Time Delay
    Wang, Likui
    Lam, Hak-Keung
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (01) : 379 - 385
  • [24] Local Stability and Local Stabilization of Discrete-time T-S Fuzzy Systems with Time-delay
    Lee, Donghwan
    Joo, Young Hoon
    Ra, In-Ho
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 29 - 38
  • [25] Exponential Stabilization of Polynomial Fuzzy Positive Switched Systems With Time Delay Considering MDADT Switching Signal
    Li, Xiaomiao
    Shan, Yannan
    Lam, Hak-Keung
    Bao, Zhiyong
    Zhao, Jundong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (01) : 174 - 187
  • [26] Stability and Stabilization Analysis of Positive Polynomial Fuzzy Systems With Time Delay Considering Piecewise Membership Functions
    Li, Xiaomiao
    Lam, Hak Keung
    Liu, Fucai
    Zhao, Xudong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (04) : 958 - 971
  • [27] New Polynomial Lyapunov Functional Approach to Observer-Based Control for Polynomial Fuzzy Systems with Time Delay
    Imen Iben Ammar
    Hamdi Gassara
    Ahmed El Hajjaji
    Mohamed Chaabane
    [J]. International Journal of Fuzzy Systems, 2018, 20 : 1057 - 1068
  • [28] New Polynomial Lyapunov Functional Approach to Observer-Based Control for Polynomial Fuzzy Systems with Time Delay
    Ammar, Imen Iben
    Gassara, Hamdi
    El Hajjaji, Ahmed
    Chaabane, Mohamed
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (04) : 1057 - 1068
  • [29] Stability analysis and stabilization for fuzzy hyperbolic time-delay system based on delay partitioning approach
    Wang, Gang
    Liu, Jinhai
    Lu, Senxiang
    [J]. NEUROCOMPUTING, 2016, 214 : 555 - 566
  • [30] Stabilization for a class of nonlinear networked control systems via polynomial fuzzy model approach
    Li, Hongyi
    Chen, Ziran
    Sun, Yiyong
    Karimi, Hamid Reza
    [J]. COMPLEXITY, 2015, 21 (02) : 74 - 81